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BORSUK-ULAM IMPLIES BROUWER:
A DIRECT CONSTRUCTION

FRANCIS EDWARD SU

1. INTRODUCTION

The Borsuk-Ulam theorem and the Brouwer fixed point theorem are well-known
theorems of topology with a very similar flavor. Both are non-constructive existence
results with somewhat surprising conclusions. Most topology textbooks that cover
these theorems (e.g., [4], [5], [6]) do not mention the two are related—although, in
fact, the Borsuk-Ulam theorem implies the Brouwer Fixed Point Theorem.

The theorems themselves are often proved using the machinery of algebraic topol-
ogy or the concept of degree of a map. That one theorem implies the other can
therefore be established once one understands this machinery, but this requires
background. Moreover, such proofs tend to be indirect, relying on the equivalence
of these existence theorems with corresponding mon-existence theorems. For in-
stance, Dugundji and Granas [3] show that the Borsuk-Ulam theorem is equivalent
to the statement that no antipode-preserving, continuous map f : S™ — S™ can be
homotopic to a constant map. From this one can see that the Brouwer fixed point
theorem is a special case, because it can be shown equivalent to the statement that
the identity map id : S™ — S™ (which is antipode-preserving) is not homotopic to
a constant map.

However, such an indirect approach is not really necessary, and perhaps a more
direct proof would give insight as to how the two theorems are related. The purpose
of this note is to provide a completely elementary proof that the Borsuk-Ulam the-
orem implies the Brouwer theorem by a direct construction, in which the existence
of antipodal points in one theorem yields the asserted fixed point in the other.

2. THE THEOREMS

Let S™ denote the unit n-sphere in R™*!, i.e., all points at distance one from the
origin. Two points are antipodal if they lie opposite each other on the sphere—i.e.,
{x, —x} for some x.

The Borsuk-Ulam Theorem. Let f : S — R" be a continuous map. There
exists a pair of antipodal points on S™ that are mapped by f to the same point in
R™.

This theorem was conjectured by S. Ulam and proved by K. Borsuk [1] in 1933.
In particular, it says that if f = (f1, f2,..., fn) is a set of n continuous real-valued
functions on the sphere, then there must be antipodal points on which all the
functions agree. For instance, one interpretation for the case n = 2 is that there is
always a pair of antipodal points on the earth’s surface with the same temperature
and barometric pressure (assuming, of course, that temperature and pressure vary
continuously).
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Let B™ denote the unit n-ball in R™. A fized point for a map f from a space
into itself is a point y such that f(y) = y. The following theorem, due to L.E.J.
Brouwer, is one of the most celebrated theorems in topology:

The Brouwer Fixed Point Theorem. Every continuous map f : B® — B"
possesses a fixed point.

Brouwer proved the case n = 3 in 1909, and Hadamard followed in 1910 with
a proof for all dimensions. Brouwer gave a different proof in 1912 [2]. See [3] for
more historical notes and a survey of fixed point theory.

In dimension three, the Brouwer theorem is often interpreted as follows: no
matter how you slosh around the coffee in a coffee cup (as long as you do it contin-
uously), some point is always in the same position it was before the sloshing took
place (although it might have moved around in the meantime). Moreover, should
you try to move this point out of its original position, you will unavoidably move
some other point back into its original position.

3. THE IDEA

As motivation we first briefly sketch a construction that shows how the Borsuk-
Ulam theorem implies the Brouwer fixed point theorem.

We choose to think of B™ as [—1,1]", the “n-cube” in R™. Similarly, we choose
to think of S™ as the boundary of the (n + 1)-cube [—1,1]"! in R* 1

S"={x|x=(x1,22,...;Tny1), |zi] <1and max|z;| =1}

The “cubical” n-sphere is homeomorphic to the usual n-sphere via the rays from the
origin. In fact, this is an antipode-preserving homeomorphism, so the Borsuk-Ulam
theorem holds for maps on cubical n-spheres. We choose to work with cubical n-
spheres and n-balls because constructing and describing functions on such objects
is easier in rectangular coordinates.

Given f: B"™ — B", we would like to construct a map g : S — R that encodes
f in such a manner that the existence of Borsuk-Ulam antipodal points for g implies
the existence of a Brouwer fixed point for f.

The idea is as follows: on the cubical n-sphere, the “top” and “bottom” faces of
the cube are homeomorphic copies of B™. These are separated by an “equatorial”
band, consisting of the other faces. Our task is to define a continuous function g
on these three regions of S™. On the top face, we define g in such a way that a zero
of g implies a fixed point for f. We then define g on the bottom face so that the
image of each point there is the negative of the image of its antipode on the top
face. Such map is called antipode-preserving—meaning g(—x) = —g(x). If we can
patch-in the equatorial region with a map that is also antipode-preserving but never
zero, then the Borsuk-Ulam Theorem guarantees the existence of antipodal points
that get mapped by g to the same point. Because g is antipode-preserving, these
antipodal points must get mapped to zero, which by construction cannot occur in
the equatorial band. A zero for g on the top or bottom face then implies a fixed
point for f.

)

4. THE CONSTRUCTION

We seek to construct a map g = (g1, 92, ..., gn) : S™ — R™ that is continuous and
antipode-preserving, i.e., g(—x) = —g(x).
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We first construct g on the “top” and “bottom” faces. Note that each face, on
which some coordinate zj, = £1, is an n-cube. When z,4+; = 1 we obtain:

Stop = {x|x= (21,22, ....xn, 1)} and S, ={x | x = (z1,22,....,2n,—1)},
which denote the top and bottom faces of the cubical S™. See Figure 1. Let

p: R""1 — R" be defined by p(x) = (21, ...,7,), i.e., p ignores the last coordinate.

X
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S bot
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antipode -X

Figure 1. Top, bottom, and equator of the cubical n-sphere (here n=2).
An example of antipodal pointsisindicated.

For all x in Sy, ,, define g(x) = p(x) — f(p(x)). For all x in S}, ;, define g(x) =
p(x) + F(—p(x)).

Since p(—x) = —p(x), one may check that g(—x) = —g(x). Thus g is, so far,
antipode-preserving. It is continuous, since f and p are. If g(x) = 0 then p(x) is a
fixed point for f.

Now we want to define g on the “side” faces of the cubical n-sphere so that it
matches up continuously with g on Si,, and Sy, and is still antipode-preserving,
but is never zero on the sides. The latter is the tricky part.

One might try to extend the values of g linearly from top to bottom, but this
does not guarantee that g # 0 on the sides. However, the following lemmas show
that if we define g suitably on the equator, we can linearly extend the values from
the equator to top and bottom without creating a new zero for g.

Lemma 1. Let F be a “side” face of the cubical S™. That is, there exists some k,
1 <k <mn, such that for all x in F, x}, is constant and equal to +1 or —1. Then
for all x in F N (S}, USE,,), the coordinate function gi(x) is either 0 or has the
same Sign as Ti.

Proof. By the definition of g, on F' NS}, , gx(x) = 21, — fr(p(x)) and on F'N Sy,
gr(x) = x + fr(—p(x)). Since f is a map to an n-cube, |fi| < 1. Hence, if x5, = 1,
then gi(x) > 0 for all x € F N (S, USE,). If mp = —1, then gi(x) < 0 for all
x € F'N (Sh,: USE,)- O
Now let S7, denote the “equator” of S™, i.e., {x € S" | x = (21, ..., %, 0)}. For
all x € S¢,, define g on S7, by
gz, ..o,tp,—1) +g(x1, ..., Tn, 1
1) 900) = plx) + 21 ER
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and observe that ¢ is now antipode-preserving on the equator.

Lemma 2. For all x € S, if |vx| = 1, then the coordinate function gi(x) is not

0 and has the same sign as xy.

Proof. Lemma 1 shows that if |zj| = 1, gi has the same sign as xj on the top and
bottom faces if it is not zero. Therefore, using (1) and pg(x) = z = £1, we see
that g(x) is non-zero on the equator and has the same sign as xy. O

To define g on the equator we have “averaged” the values of the corresponding

points on Sy, and S7., and then “lifted” that average by p(x) (which equals zy in

the k-th coordinate) to pull it away from possibly being zero. See Figure 2.

if ) ispositive if X isnegative

g((x)

Figure 2. Extending the valuesof g, linearly from the equator to top and bottom.
Graphs show across-section of g, valuesalong on "longitude” of the
cubical n-sphere on the faces determined by x| = +1,-1.

We now define g continuously on the rest of S™ by extending it linearly from the
equator to the values on 57, and Sfop. That is, for 0 < z,41 <1, let

(2) 9(x) = xpt1 g(x1, sy 1) + (1 —zpy1) g(z1, ooy @y, 0).

For -1 <x,41 <0, let

(3) 9(x) = —Zpi1 g(x1, ey Xny, —1) + (14 2041) g(21, .0y 20, 0).

Refer to Figure 2 again. Note that g is continuous and antipode-preserving. Fur-

. . " n
thermore, it can achieve 0 only on Sy, or Sy, ;, because of

Lemma 3. If [z,41]| < 1, then g(x) # 0.

Proof. Since |z,+1| < 1, we are on a side face and therefore there exists some k,
1 < k < n, for which z; = £1. We shall show that g(x) cannot be zero by showing
that the coordinate function g (x) is non-zero.

Consider (2) and (3). By Lemmas 1 and 2, g (21, z2, ..., Tn, £1) and gi (21, 22, ..., 2, 0)
have the same sign as xj, and the latter is non-zero. Moreover, (1 — z,41) and
(1 4+ xp41) are strictly positive because |z,4+1| < 1. Equations (2) and (3) now
imply that gp(x) is non-zero and, in fact, has the same sign as x. O
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Now that ¢ is defined everywhere on S™, the Borsuk-Ulam Theorem implies that
there exists a pair {x, —x} such that g(x) = g(—x). But g(x) = —g(—x), since g
is antipode-preserving. Therefore g(x) = g(—x) = 0 which, by Lemma 3, implies
that one of the pair {x, —x} is in Sj,,. Without loss of generality, suppose it is x.
Then g(x) = p(x) — f(p(x)) = 0 on S}, implies that for y = p(x) € B", we have
f(y) =y, which proves the Brouwer Fixed Point Theorem.
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