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Sets, functions, and the continuum hypothesis
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manager's surprise (he is not a mathematician) this works; he can still put
up all guests plus the new arrival x!

Now it is clear that he can also put up another guest y, and another one z,
and so on. In particular, we note that, in contrast to finite sets, it may well
happen that a proper subset of an infinite set M has the same size as M. In
fact, as we will see, this is a characterization of infinity: A set is infinite if
and only if it has the same size as some proper subset.

Let us leave Hilbert’s hotel and look at our familiar number sets. The sct
Z of integers is again countable, since we may enumerate Z in the form
Z={0,1,-1,2,-2,3,-3,...}. It may come more as a surprise that the
rationals can be enumerated in a similar way.

Theorem 1, The set Q@ of rational numbers is countable.

B Proof. By listing the set Q7 of positive rationals as suggested in the
figure in the margin, but leaving out numbers already encountered, we see
that Q" is countable, and hence so is by listing  at the beginning and
—% right after rL; With this listing

Q - {()a1x71x21 72:%97%>%>7%:33 7354: "'4:%1_37"' } al

Another way to interpret the figure is the following statement:
The union of countably many countable sets M, is again countable.

Indeed, set MM, = {@,1, 002, @ng, - - - and list

[a"s)

U M, = {a11. 221,012, @13, @22, 431, @41, 032, Q23, @14, - - - }

=1
precisely as before,
Let us contemplate Cantor’s enumeration of the positive rationals a bit
more. Looking at the figure we obtained the sequence

4
203720 1 1020 3§ 5y a0 3 30 T
and then had to strike out the duplicates suchas £ = 4 or 2 = L.
But there is a listing that is even more elegant and systematic, and which
contains no duplicates — found only quite recently by Neil Calkin and

Herberl Wilf. Their new list starts as follows:

12 11 2 3 4 3 2 1 1 2 3 i
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4 2 b 49
Here the denominator of the n-th rational number equals the numerator of
the (n + L)-st number. In other words, the n-th fraction is b{n)/b(n + 1),

where (b(n)} is a sequence that starts with

T z{)
(1,1,2,1,3,2,3,1,4,3,5,2,5,3,4, 1,5, ...).
This sequence has first been studied by a German mathematician, Morilz

Abraham Stern, in a paper from 1858, and is has become known as “Stern’s
diatomic series.”



Sets, functions, and the continuum hypothesis

95

How do we obtain this sequence, and hence the Calkin-Wilf listing of the
positive fractions? Consider the infinite binary tree in the margin. We
immediately note its recursive rule:

1

e . is on top of the tree, and

e every node ;‘, has two sons: the left son is % and the right son is 143;3
We can easily check the following four properties:

(1) All fractions in the tree are reduced, that is, if T appears in the tree,
then » and s are relatively prime.

This holds for the top % and then we use induction downward, If r and s
are relatively prime, then so are r and r + 5, as well as s and r + s.

(2) Every reduced fraction % > () appears in the tree.

We use induction on the sum r + s. The smallest value is v + s = 2, that
is L = % and this appears at the top. If » > s, then “=* appears in the tree

by induction, and so we get T as its right son. Similarly. if r < s, then
appears, which has 7 as its left son.

r
&—=T

(3) Every reduced fraction appears exactly once.

The argument is similar. 1f T appears more than once, then ¢ # s, since
g 5 app

any node in the tree except the top is of the form Z—jr—} < lor %i > 1. But
itr > sorr < s, then we argue by induction as before.

Every positive rational appears therefore exactly once in our tree, and we
may write them down listing the numbers level-by-level from left to right.
This yields precisely the initial segment shown above.

(4) The denominator of the n-th fraction in our list equals the numerator
of the (7 + 1)-st.

This is certainly true for n = 0, or when the n-th fraction is a left son.

r

Suppose the n-th number £ is a right son. If © is at the right boundary,

then s = 1, and the successor lies at the left boundary and has numerator 1,

Finally, if l; is in the interior, and Z—: is the next fraction in our sequence,

then * is the right son of ===, "—, is the left son of =, and by induction
5 8 3 , s'- T

”

£ is the numerator of ——, so we get s = 7’

—rt

the denominator of ";

Well, this is nice, but there is even more to come, There are two natural
questions:

— Does the sequence (b(n)), . have a “meaning™? That is, does b(r:)
count anything simple?

— Given -, is there an easy way 1o determine the successor in the listing?
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Far example, k(6] = 3, with the hyper-
binary representations

6 =442

6=44+14+1

G=2+4+24+1+1

o
SN
Y % N

To answer the first question, we work out that the node b{n)/b{n + 1) has
the two sons b(2n + 1)/6(2n + 2} and b(2n + 2)/b{(2n + 3). By the set-up
of the tree we obtain the recursions

B(2n + 1) =b(n) and b(2n+ 2} = b(n} +b(n+1). (1)

With b(0) = 1 the sequence {b(n)}},»0 is completely determined by (1).
So. is there a “nice” “known” sequence which obeys the same recursion?
Yes, there is, We know that any number n can be uniguely written as a sum
of distinct powers of 2 — this is the usual binary representation of n. A
hyper-binary representation of = is a representation of n a sum of powers
of 2, where every power 2% appears at most rwice. Let A{n) be the number
of such representations for n. You arc invited 10 check that the sequence
h{n) obeys the recursion (1), and this gives b(n} = h(n) for all n.
Incidentally, we have proved a surprising fact: Let £ be a reduced fraction,
there exists precisely one integer n with r = h(n) and s = hin + 1).
Let us look at the second question. We have in our tree

r

/ * \ that is, withz := 7, / \
1+r

T r4s
- r+1

T+s

We now use this to generate an even larger infinite binary tree (without a
root) as follows:
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In this trec all rows are equal, and they all display the Calkin-Wilf listing
of the positive rationals (starting with an additional 2).
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So how doces one get from one rational to the next? To answer this, we first
record that for every rational & its right son is & + 1, the right grand-son is
& + 2, so the k-fold right son is 2 4+ &, Similarly, the left son of x is ==

T+a’
. T , . . T e &
whose left son 1s Tio5+ and so on: The A-fold left son of = 1s T
r

Now to find how to get from £ = x to the “next” rational f(z) in the
listing, we have to analyze the situation depicted in the margin. In fact, if
we consider any nonnegative rational number x in our infinite binary tree,
then it is the k-fold right son of the left son of some rational y > 0 (for
some & > 1)), while f(z) is given as the &-fold left son of the right son of
the same y. Thus with the formulas for k-fold left sons and k-fold right
sons, we get
=2 + k.
1+y

as claimed in the figure in the margin. Here & = |x| is the integral part
of x, while = = {z} is the fractional part. And from this we obtain

_ y+1 N 1 B 1 B 1
ol k(41 Lk k1 x4z}

y+l v+l
Thus we have obtained a beautiful formula for the successor f(z) of =,
found very recently by Moshe Newman:

flx)

The function

. 1
r — flz) = —/———————
J(2) 2] +1—{x}
g generates the Calkin-Wilf sequence
2
LR LTS N I T P

which contains every positive rational number exactly once.

The Calkin-Wilf-Newman way to enumerate the positive rationals has a
number of additional remarkable properties. For example, one may ask for
a fast way to determine the n-th fraction in the sequence, say forn = 1 0f.
Here it is:

To find the r-th fraction in the Calkin-Wilf sequence, express n as a
binary number . = (bgbk_1 ...y )2, and then follow the path in the
Calkin-Wilf tree that is determined by its digits, starting at y = %

Here b, = 1 means “take the right son,” that is, “add the denominator
to the numerator,” while #; = 0 means “take the left son,” that is, “add

the numerator to the denominator.”

The figure in the margin shows the resulting path for n = 25 = (11001),:
So the 25th number in the Calkin-Wilf sequence is % The reader could
easily work out a similar scheme that computes for a given fraction § (the
binary representation of) its position v in the Calkin-Wilf sequence.
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