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Of friends and politicians Chapter 34

It is not known who first raised the following problem or who gave it its
human touch. Here it is:

Suppose in a group of people we have the situation thar any pair of
persons have precisely one common friend. Then there is always a
person (the “politician™) who is everybody’s friend.

In the mathematical jargon this is called the friendship theorem.

Before tackling the proof let us rephrase the problem in graph-theoretic
terms. We interpret the people as the set of vertices V' and join two vertices
by an edge if the corresponding people are friends. We tacitly assume that <4 politician’s smile”
friendship is always two-ways, that is, if » is a friend of », then v is also

a friend of u, and further that nobody is his or her own friend. Thus the

theorem takes on the following form:

Theorem. Suppose that G is a finite graph in which any two vertices have
precisely one common neighbor. Then there is a veriex which is adjacent to
all other vertices.

Note that there are finite graphs with this property; see the figure, where u
is the politician. However, these “windmill graphs™ also turn out to be the
only graphs with the desired property. Indeed, it is not hard to verify that in
the presence of a politician only the windmill graphs are possible.
Surprisingly, the friendship theorem does not held for infinite graphs!
Indeed, for an inductive construction of a counterexample one may start for
example with a 5-cycle, and repeatedly add common neighbors for all pairs
of vertices in the graph that don’t have one, yet. This leads (o a (countably)
infinite friendship graph without a politician.
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Several proofs of the friendship theorem exist, but the first proof, given by A windmill graph
Paul Erdés, Alfred Rényi and Vera Sés, is still the most accomplished.
B Proof. Suppose the assertion is false, and (7 is a counterexample, that is,
no vertex of (7 is adjacent to all other vertices. To derive a contradiction we
U

proceed in two steps. The first part is combinatorics, and the second part is
linear algebra.

(1) We claim that &' is aregular graph, that is, d(w) = d{v) forany u. v € V.
Note first that the condition of the theorem implies that there are no cycles
of length 4 in (7. Let us call this the C'y-condition. Y
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We first prove that any two non-adjacent vertices u and v have equal degree
d(u) = d(v). Suppose d(u) = k, where wy, . . ., wy. are the neighbors of u.
Exactly one of the w;, say wo, is adjacent to v, and wy adjacent to exactly
one of the other w;’s, say w1, so that we have the situation of the figure to
the left. The vertex v has with w; the common neighbor w9, and with w;
(i > 2) a common neighbor z; (i > 2). By the C4-condition, all these z;
must be distinct. We conclude d(v) > k = d(u), and thus d(u) = d(v) = k
by symmetry.

To finish the proof of (1), observe that any vertex different from w, is not
adjacent to either u or v, and hence has degree k£, by what we already
proved. But since ws also has a non-neighbor, it has degree £ as well,
and thus G is k-regular.

Summing over the degrees of the & neighbors of u we get k2. Since
every vertex (except u) has exactly one common neighbor with u, we have
counted every vertex once, except for u, which was counted k times. So
the total number of vertices of G is

n = k¥-k+1. (1)

(2) The rest of the proof is a beautiful application of some standard results
of linear algebra. Note first that k£ must be greater than 2, since for & < 2
only G = K; and G = K3 are possible by (1), both of which are trivial
windmill graphs. Consider the adjacency matrix A = (a;;), as defined on
page 220. By part (1), any row has exactly £ 1’s, and by the condition of
the theorem, for any two rows there is exactly one column where they both
have a 1. Note further that the main diagonal consists of 0’s. Hence we
have

Eo1 1
1k 1

A% = _ o = (k-1)I1+J,
1 ... 1 k

where I is the identity matrix, and J the matrix of all 1’s. It is immediately
checked that J has the eigenvalues n (of multiplicity 1) and 0 (of multi-
plicity n — 1). It follows that A2 has the eigenvalues k — 1 + n = k?
(of multiplicity 1) and £ — 1 (of multiplicity » — 1).

Since A is symmetric and hence diagonalizable, we conclude that A has
the eigenvalues & (of multiplicity 1) and vk — 1. Suppose r of the
eigenvalues are equal to /& — 1 and s of them are equal to —v/k — 1, with
r+ s = n — 1. Now we are almost home. Since the sum of the eigenvalues
of A equals the trace (which is 0), we find

k+rvk—1-svk—1 = 0,
and, in particular, r # s, and

k

§—r

E—1 =
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Now if the square rool /vrc of 4 natural number sr is rational, then it is an
integer! An elegant proof for this was presented by Dedekind in 1858: Let
719 be the smailest natural number with 1ig/m € N, If /m & N, then there
exists £ € W owith 0 < /i — € < 1. Setting 7y := no(y/rn — £}, we find
ny, € Nand nyjv/m = ngly/m - £)/m = nym — £{ng/m} € N. With
1y < ny this yields a contradiction to the choice of 1.

Returning to our equation, let us set h = +/k — 1 € N, then
h(s—7) = k = h*4 1.

Since h divides * + 1 and h®, we find that / must be equal to 1, and
thus & = 2, which we have already excluded. So we have artived at a
contradiction. and the proof is complete. O

However, the story is not quite over. Let us rephrase our theorem in the
following way: Suppose (' is a graph with the property that between any
two vertices there is exactly one path of length 2. Clearly, this is an equiv-
alent formulation of the friendship condition. Qur theorem then says that
the only such graphs are the windmill graphs. But what if we consider
paths of length more than 27 A cenjecture of Anton Kotzig asserls that the
analogous situation is impossible.

Kotzig’s Conjecture. Ler € > 2. Then there are no finite graphs with the
property that between any fwo vertices there is precisely one path of
length ¢.

Kotzig himself verified his conjecture for £ < & In [3] his conjecture
is proved up to £ = 20, and A. Kostochka has told us recently that it is
now verified for all £ < 33. A gencral proof, however, seems to be out of
reach ...
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o1 001
1 001 00
A=1 01 0 1 0
o0 0 1 01

The adjacency matrix for the 5-cycle Cs

Letus carry our discussion a little further. We see from (8) that the larger o,
is for a representation of (7, the better 1 bound for &((7) we will get. Here
is a method that gives us an orthonormal representation for any graph G,
To G = (V, E) we associate the adjacency matrix A — {u;;), which is
defined as follows: Let V' = {wy. ..., v, }. then we set

- 1 if vy € E
o 0 otherwise.

A is a real symmetric malrix with (’s in the main diagonal.

Now we need two facts from linear algebra, First, as a symmetric matrix,
A has m real cigenvalues Ay > Ay > ... > A, (some of which may
be equal), and the sum of the eigenvalues equals the sum of the diagonal
entries of A, that is, (). Hence the smallest eigenvalue must be negative
{exceptin the trivial case when (7 has no edges). Let p = |A| = —Am be
the absolute value of the smallest eigenvalue, and consider the matrix

M =1+ lA,
P

where [ denotes the (m x mi)-identity matrix, This A has the eigenvalues
1+A_‘"1 > 1+ iﬁl > ..z H—A;;—‘ = (). Now we quote the secondrésult([he
principal axis theorem of linear algebra): If M = () is a real symmetric
matrix with all eigenvalues > 0, then there are vectors LG , MCONCE T
for s = rank( M), such that

my = (™ ah (1<, <m).
In particular, for A — I + lpA we obtain
('v“),'v(")) = myu =1 for all

and 3 i 1
W@ wiy = g ford # j.
#

Since a;; = () whenever v;v; & E, we see that the vectors vl et
form indeed an orthonormal representation of G,

Let us, finally, apply this construction to the m-cycles C,, forodd m > 5.
Here one easily compuies p = |Ayin| = 2cos I (see the box). Every
row of the adjacency matrix contains two 1’s, implying that every row of
the matrix M sumsto 1 + % For the representation {v'?, ..., v} this

means
1
m

Cos8 —
m

‘ 2
WP M ™y = 1S =14
P

and hence

ki)

1
W ) = —(1 FleosZ)7Y) = o
I
for all i, We can therefore apply our main result (8) and conclude

T

OC,) < —
B(Cm) 1+(c05%)'1

(form = 5 odd). (D



