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! 8 CONSTRUCTION OF THE
CHAPTER REAL NUMBERS

The mass of drudgery which this chapter necessarily contains is relieved by
one truly first-rate idea. In order to prove that a complete ordered field exists
we will have to explicitly describe one in detail; verifying conditions (1)~(10)
for an ordered field will be a straightforward ordeal, but the description of the
field itself, of the elements in it, is ingenious indeed.

At our disposal is the set of rational numbers, and from this raw material
it is necessary to produce the field which will ultimately be called the real
numbers. To the uninitiated this must seem utterly hopeless—if only the
rational numbers are known, where are the others to come from? By now we
have had enough experience to realize that the situation may not be quite so
hopeless as that casual consideration suggests. The strategy to be adopted in
our construction has already been used effectively for defining functions and
complex numbers. Instead of trying to determine the “real nature’ of these
concepts, we settled for a definition that described enough about them to
determine their mathematical properties completely.

A similar proposal for defining real numbers requires a description of real
numbers in terms of rational numbers. The observation, that a real number
ought to be determined completely by the set of rational numbers less than it,
suggests a strikingly simple and quite attractive possibility: a real number
might (and in fact eventually will) be described as a collection of rational
numbers. In order to make this proposal effective, however, some means must
be found for describing ““the set of rational numbers less than a real number”
without mentioning real numbers, which are still nothing more than heuristic
figments of our mathematical imagination.

If A is to be regarded as the set of rational numbers which are less than the
real number «, then 4 ought to have the following property: If x isin 4 and y
is a rational number satisfying y < x, then y is in 4. In addition to this
property, the set 4 should have a few others. Since there should be some
rational number x < «, the set 4 should not be empty. Likewise, since there
should be some rational number x > «, the set 4 should not be all of Q.
Finally, if x < @, then there should be another rational number y with
x <y < @, so 4 should not contain a greatest member.

If we temporarily regard the real numbers as known, then it is not hard to
check (Problem 8-17) that a set A with these properties is indeed the set of
rational numbers less than some real number . Since the real numbers are
presently in limbo, your proof, if you supply one, must be regarded only as an
unofficial comment on these proceedings. It will serve to convince you, how-
ever, that we have not failed to notice any crucial property of the set 4. There
appears to be no reason for hesitating any longer.
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A real number is a set «, of rational numbers, with the following four
properties:
(1) If xisin @ and y is a rational number with y < x, then y is also in a.
(2) a = @.
3) o #=Q.

(4) There is no greatest element in a; in other words, if x is in a, then
there is some y in @ with y > x.

The set of all real numbers is denoted by R.

Just to remind you of the philosophy behind our definition, here is an
explicit example of a real number:

a = {xin Q: x < 0orx? <2}

It should be clear that e is the real number which will eventually be known

as V/2, but it is not an entirely trivial exercise to show that « actually is a
real number. The whole point of such an exercise is to prove this using only
facts about Q; the hard part will be checking condition (4), but this has already
appeared as a problem in a previous chapter (finding out which one is up to
you). Notice that condition (4), although quite bothersome here, is really
essential in order to avoid ambiguity; without it both

_Axin Q:x < 1}
and
{xinQ:x < 1}

would be candidates for the “real number 1.”

The shift from 4 to « in our definition indicates both a conceptual and a
notational concern. Henceforth, a real number s, by definition, a set of
rational numbers. This means, in particular, that a rational number (a
member of Q) is not a real number; instead every rational number x has a
natural counterpart which is a real number, namely, {y in Q: y < x}. After
completing the construction of the real numbers, we can mentally throw away
the elements of Q and agree that Q will henceforth denote these special sets.
For the moment, however, it will be necessary to work at the same time with
rational numbers, real numbers (sets of rational numbers) and even sets of
real numbers (sets of sets of rational numbers). Some confusion is perhaps
inevitable, but proper notation should keep this to a minimum. Rational
numbers will be denoted by lower case Roman letters (x, 9, 2, a, b, ¢) and
real numbers by lower case Greek letters (a, B8, v); capital Roman letters
(4, B, C) will be used to denote sets of real numbers.

The remainder of this chapter is devoted to the definition of +, +, and P
for R, and a proof that with these structures R is indeed a complete ordered

field.
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We shall actually begin with the definition of P, and even here we shal’
work backwards. We first define o < §8; later, when =, +, and 0 are available,
we shall define P as the set of all @ with 0 < «, and prove the necessarv
properties for P. The reason for beginning with the definition of < is the
simplicity of this concept in our present setup:

Definition. If @ and B are real numbers, then & < 8 means that « is contained
in B (that is, every element of « is also an element of 8), but « = 8.

A repetition of the definitions of <, >, = would be stultifying, but it is
interesting to note that < can now be expressed more simply than <; if @ and
B are real numbers, then o < 8 if and only if « is contained in 8.

If A is a bounded collection of real numbers, it is almost obvious that A
should have a least upper bound. Each « in 4 is a collection of rational num-
bers; if these rational numbers are all put in one collection 8, then J is pre-
sumably sup 4. In the proof of the following theorem we check all the little
details which have not been mentioned, not least of which is the assertion that
B is a real number. (We will not bother numbering theorems in this chapter,
since they all add up to one big Theorem: There is a complete ordered field.)

If 4 is a set of real numbers and 4 # @ and 4 is bounded above, then 4 has a
least upper bound.

Let 8 = {x: x is in some « in 4}. Then f is certainly a collection of rational
numbers; the proof that § is a real number requires checking four facts.

(1) Suppose that x is in 8 and y < x. The first condition means that x is
in o for some « in 4. Since « is a real number, the assumption y < x
implies that y is in @ Therefore it is certainly true that y is in .

(2) Since 4 = 0, there is some « in A. Since a is a real number, there is
some x in a. This means that x is in 8, so 8 = §.

(3) Since 4 is bounded above, there is some real number 7 such that
a <« for every « in A. Since v is a real number, there is some
rational number x which is not in v. Now a < vy means that « is
contained in ¥, so it is also true that x is not in @ for any e in 4. This
means that x is not in §; so 8 = Q.

(4) Suppose that x is in 8. Then x is in « for some « in 4. Since « does
not have a greatest member, there is some rational number y with
# < y and y in «. But this means that y is in §; thus § does not have
a greatest member.

These four observations prove that (3 is a real number. The proof that 3 is
the least upper bound of 4 is easier. If & is in 4, then clearly « is con-
tained in §; this means that & < 3, so 8 is an upper bound for 4. On the other
hand, if 7 is an upper bound for 4, then a < 4 for every @ in 4; this means
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that « is contained in #, for every a in 4, and this surely implies that 3 is con-
tained in . This, in turn, means that 8 < v; thus § is the least upper bound
of 4.1

The definition of + is both obvious and easy, but it must be complemented
with a proof that this “obvious” definition makes any sense at all.

Definition. If « and § are real numbers, then

o+ B = {x: x = y + z for some y in & and some z in §}.
If  and B are real numbers, then o -4 § is a real number.

Once again four facts must be verified.

(1) Suppose w < x for some x in & 4 8. Then x = y + 2z for some y in &
and some z in 8, which means that w <y + 2, and consequently,
w — y < z. This shows that w — y is in 8 (since z is in 8, and B is a
real number). Since w = y + (w — ), it follows that wisin + 8.

(2) It is clear that a 4 8 # @, since o = @ and 3 = §.

(3) Since a = Q and 8 = Q, there are rational numbers ¢ and b with a
not in @ and & not in B. Any x in « satisfies x < a (for if @ < x, then
condition (1) for a real number would imply that a is in @); similarly
any y in (8 satisfies y < b. Thus x + y < g -+ bforany x in @ and y
in 8. This shows that @ -+ & is not in @ 4+ f, so @ + 8 # Q.

(4) If xis in a 4 8, then x = y + z for y in @ and 2 in B. There are
3" in @ and 2’ in B with y <y’ and 2z < 2; then x <y 4 2 and
y' + 2" is in o 4 B. Thus @ 4 8 has no greatest member. |

By now you can see how tiresome this whole procedure is going to be. Every
time we mention a new real number, we must prove that it s a real number;
this requires checking four conditions, and even when trivial they require
concentration. There is really no help for this (except that it will be less
boring if you check the four conditions for yourself). Fortunately, however, a
few points of interest will arise now and then, and some of our theorems will be
easy. In particular, two properties of -4 present no problems.

If @, B, and v are real numbers, then (@ 4+ 8) + v = e+ 8+ V).

Since (x +y) + 2z = x + (y + 2) for all rational numbers %, y, and z, every
member of (& 4 B) 4 7 is also a member of a 4 (8 + 7), and vice versa. f

If @ and B are real numbers, then ¢ 4+ 8 = 5+ a.

Left to you (even easier). ]I
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To prove the other properties of 4 we first define 0.
Definition. 0 = {x in Q: x < 0}.

It is, thank goodness, obvious that 0 is a real number, and the following
theorem is also simple.

If @ is a real number, then o 4 0 = a.

If xisin @ and y is in 0, then y < 0, s0 x 4 y < x. This implies that x + yis
in a. Thus every member of @ = 0 is also a member of «.

On the other hand, if x is in ¢, then there is a rational number ¥ in @ such
that y > x. Since x = y + (x — y), where y isin @, and x — y < 0 (so that
x — yisin 0), this shows that x is in @ 4 0. Thus every member of e is also a
member of « <+ 0. |

The reasonable candidate for =& would seem to be the set
{xin Q: —x is not in a}

(since —x not in & means, intuitively, that —x > «, so that x < —¢). Butin
certain cases this set will not even be a real number. Although a real number
a does not have a greatest member, the set

Q — a = {xin Q: xis not in &}

may have a /east element x;; when « is a real number of this kind, the set
{x: —xisnot in a} will have a greatest element —x,. It is therefore necessary
to introduce a slight modification into the definition of =, which comes
equipped with a theorem.

Definition. If a is a real nuniber, then

—a = {xin Q: —xis notin @, but —x is not the least element of Q — al.
If @ is a real number, then =« is a real number.

(1) Suppose that xisin =—a andy < x. Then —y > —x. Since —x is not
in @, it is also true that —y is not in a. Moreover, it is clear that —y is
not the smallest element of Q — «, since —x is a smaller element.
This shows that y is in —q.

(2) Since @ # Q, there is some rational number y which is not in . We
can assume that y is not the smallest rational number in Q — &
(since y can always be replaced by any y* > ). Then —y is in —a.
Thus —a > (.

(3) Since & # , there is some x in .. Then —x cannot possibly be in —a,
so —a # Q.
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(4) If x is in =—q, then —x is not in e, and there is a rational number
y < —x which is also not in a. Let z be a rational number with
y < z < —x Then zis also not in @, and z is clearly not the smallest
element of Q — a. So —z is in =a. Since —z > #, this shows that
—a does not have a greatest element. ||

The proof that @ + (=a) = 0 is not entirely straightforward. The diffi-
culties are not caused, as you might presume, by the finicky details in the
definition of —e. Rather, at this point we require the Archimedian property of
Q stated on page 550, which does not follow from P1-P12. This property
is needed to prove the following lemma, which plays a crucial role in the next
theorem.

Let a be a real number, and z a positive rational number. Then there are
(Figure 1) rational numbers x in @, and y notin &, such thaty — x = 2. More-
over, we may assume that y is not the smallest element of Q- a.

Suppose first that 2 is in «. If the numbers
2,22, 32, . ..

were all in a, then every rational number would be in «, since every rational
number w satisfies w < nz for some 7, by the additional assumption on page
550. This contradicts the fact that « is a real number, so there is some £ such
that x = kz is in @ and y = (k£ + 1)z is not in a. Clearly y — x = 2.

Moreover, if y happens to be the smallest element of Q — «, let x’ > x be
an element of «, and replace x by x’, and y by y + (¥ — x).

If 2 is not in «, there is a similar proof, based on the fact that the numbers
(—n)z cannot all fail to be in a. ||

----- j =
5 —
x ¥

FIGURE 1
If « is a real number, then

a4 (—a) =0.

Suppose x is in & and y is in —a. Then —y is not in @, so —y > x. Hence
x +y <0, s0 x+ yisin 0. Thus every member of @ + (—a) is in 0.

It is a little more difficult to go in the other direction. If z is in 0, then
—2z > 0. According to the lemma, there is some x in , and some y notin &,
with y not the smallest element of Q — a, such that y — x = —z. This equa-
tion can be written x + (—y) = z. Since x is in @, and —y is in —a, this
proves that z is in a 4 (—a). |
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Before proceeding with multiplication, we define the “positive elements’*
and prove a basic property:

Definition. P = {ain R: @ > 0]}.
Notice that o 4 § is clearly in P if @ and 8 are.

If @ is a real number, then one and only one of the following conditions holds:

(i) a =0,
(ii) ais in P,
(iii) == is in P.

If & contains any positive rational number, then & certainly contains all nega-
tive rational numbers, so & contains 0 and « 0,ie., «isin P. If « contains
no positive rational numbers, then one of two possibilities must hold:

(1) « contains all negative rational numbers; then « = 0.

(2) there is some negative rational number x which is not in a; it can be
assumed that x is not the least element of Q — & (since x could be
replaced by x/2 > x); then —a contains the positive rational number
—%, 80, as we have just proved, —« is in P.

This shows that at least one of (i)-(iii) must hold. If o = 0, it is clearly impossi-
ble for condition (ii) or (iii) to hold. Moreover, it is impossible that & > 0 and
—a > 0 both hold, since this would imply that 0 = « + (—a) > 0.1

Recall that @ > (8 was defined to mean that a contains B, but is unequal to
B. This definition was fine for proving completeness, but now we have to show
that it is equivalent to the definition which would be made in terms of P.
Thus, we must show that & — 8 > 0 is equivalent to & > . This is clearly a
consequence of the next theorem.

If @, B8, and # are real numbers and o > B, then ¢4 v > B+ 7.

The hypothesis & > § implies that 8 is contained in a; it follows immediately
from the definition of = that 8 + 7 is contained in « == 4. This shows that
a~+ v 2 B+ v. We can easily rule out the possibility of equality, for if

aty =8+,

a=(a+7v)+(=7) =B+ + (—y) =8,
which is false. Thus a + v > 8 + . ||

then

Multiplication presents difficulties of its own. If &, 8 > 0, then « - 8 can
be defined as follows.
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Definition. If a and § are real numbers and o, B > 0, then

a-B={z2z<0orz=x-yforsomexin aandyin § with x, y > 0}.
THEOREM  If o and 8 are real numbers with @, 8 > 0, then &« 3 is a real number.

PROOF  As usual, we much check four conditions.

(1) Suppose w < z, where zisin a - 8. If w < 0, then w is automatically
in o+ B. Suppose that w > 0. Then z > 0,50 2 = x * y for some posi-
tive x in « and positive y in 8. Now

Since 0 < w < z, we have w/z < 1, so (w/2) - x is in a. Thus @ is
inea-pB.

(2) Clearly a- 8 # .

(3) If x is not in @, and y is not in §, then x > %' for all " in e, and
y >y for all y/ in B. Hence xy > xy’ for all such positive x" and y’.
So xy is not in @+ B; thus a - 8 = Q.

(4) Suppose w is in @ - 8, and w < 0. There is some x in @ withx >0
and some y in 8 with y > 0. Then z = xy is in a+fB and z > w.
Now suppose w > 0. Then w = xy for some positive x in & and some
positive y in 8. Moreover, & contains some x’ > x; if z = «'y, then
z>x) = w, and 2z is in a+B. Thus 3 does not have a greatest

element. |

Notice that @ - 8 is clearly in P if @ and 3 are. This completes the verifica-
tion of all properties of P. To complete the definition of - we first define |a.

Definition. If e is a real number, then

o = a, fa>0
—a, ifa<gO.

Definition. If o and (8 are real numbers, then

0, ifa=00orB=0
a-f=1lal Bl ifa>08>00ra<0,8<0
—(la] - 18D, ifa>0,8<00ra<0,3>0.

As one might suspect, the proofs of the properties of multiplication usually
involve reduction to the case of positive numbers.

THEOREM  If o, §, and v are real numbers, then o+ (8- %) = (a+8) * 7-
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PROOF  Thisis clear if o, 8, ¥ > 0. The proof for the general case requires considering
separate cases (and is simplified slightly if one uses the following theorem}.

THEOREM  If o and 8 are real numbers, then o+ 8 = B a.
PROOF  This is clear if o, 8 > 0, and the other cases are easily checked. J

Definition. 1 = {xin Q: x < 1}.
(It is clear that 1 is a real number.)

THEOREM  If « is a real number, then @+ 1 = a.

PROOF  Let a > 0. It is easy to see that every member of & - 1 is also a member of a.
On the other hand, suppose x is in a. If x < 0, then ¥ is automatically in
a-1.If x> 0, then there is some rational number y in @ such that x < 32
Then x = y - (x/y), and x/y isin 1, so xisin e - 1. This proves thatea 1 = «
ifa>0.
If @ < 0, then, applying the result just proved, we have

a1l==(af- 1)) = —=(laf) = .

Finally, the theorem is obvious when a = 0. |

Definition. If o is a real number and a > 0, then

a~t = {xin Q: x < 0,0orx > 0and 1/x is not in e, but 1/ is not the smallest
member of Q — «};

if @ <0, then &=t = —(Ja|™).
THEOREM  If e is a real number unequal to 0, then @~ is a real number.

PROOF  Clearly it suffices to consider only @ > 0. Four conditions must be checked.

(1) Suppose y < #, and x is-in &% If y < 0, then y is in @1, Ify > 0.
then x > 0, so 1/x is not in «. Since 1/y > 1/x, it follows that 1/y s
notin «, and 1/y is clearly not the smallest element of Q—a,suyis
in a1,

(2) Clearly o™ = .

(3) Since a > 0, there is some positive rational number x in . Then 1 /x
isnotin a7, so o™t = Q.

(4) Suppose x is in @~ If x < 0, there is clearly some y in o~ with
y > x because a~! contains some positive rationals. If x > 0, then
1/x is not in a. Since 1/x is not the smallest member of Q — a, there
is a rational number y not in @, with y < 1/x. Choose a rationa!
number z with y < z < 1/x. Then 1/z is in @, and 1/z > x. Thus
a~! does not contain a largest member. [ ]
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In order to prove that ! is really the multiplicative inverse of a, it helps
to have another lemma, which is the multiplicative analogue of our first
lemma.

Let o be a real number with o > 0, and z a rational number with z > 1.
Then there are rational numbers x in @, and y not in @, such that y/x = 2.
Moreover, we can assume that y is not the least element of Q — a.

Suppose first that z is in . Since 2 — 1 > 0 and
=01+ (=1))">14+nz—1),

it follows that the numbers
z, 2% 2% ...

cannot all be in a. So there is some £ such that x = z*is in @, and y = 2#*!
is not in e. Clearly y/x = z. Moreover, if y happens to be the least element of
Q — a, let ¥’ > x be an element of a, and replace x by x” and y by yx'/x.

If 2 is not in a, there is a similar proof, based on the fact that the numbers
1/2* cannot all fail to be in a. |

If & is a real number and « # 0, then - o~ = 1.

It obviously suffices to consider only & > 0, in which case ¢~ > 0. Suppose
that x is a positive rational number in @, and y is a positive rational number
in ™% Then 1/y is not in @, so 1/y > x; consequently xy < 1, which means
that xy is in 1. Since all rational numbers x < 0 are also in 1, this shows that
every member of @ + @™ is in 1.

To prove the converse assertion, let z be in 1. If z < 0, then clearly z is in
o+~ Suppose 0 < z < 1. According to the lemma, there are positive
rational numbers x in @, and y not in «, such that y/x = 1/z; and we can
assume that y is not the smallest element of Q — «. But this means that
z = x* (1/y), where xisin @, and 1/y is in &~ Consequently, zisin @+ o™ |

We are almost done! Only the proof of the distributive law remains. Once
again we must consider many cases, but do not despair. The case when all
numbers are positive contains an interesting point, and the other cases can
all be taken care of very neatly.

If @, 8, and v are real numbers, then @+ (B4 7v) = a8+ a-v.

Assume first that , 8, v > 0. Then both numbers in the equation contain
all rational numbers < 0. A positive rational number in - (8 4 %) is of
the form x - (y + 2) for positive x in @, y in 8, and zin 4. Since x * (y + 2) =
x°y 4 x'z where x -y is a positive element of @ - 8, and x - 2 is a positive
element of « - 7y, this number is also in @ - 8 4 « - . Thus, every element of

aB+v)isalsoina+f =+ a-7.
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On the other hand, a positive rational number in -84 -y is of the
form x; * y + x; * z for positive x1, X, in @, y in B, and z in 4. If x1 < x4, then
(x1/%5) *y <y, 50 (x1/x2) - y is in §. Thus

210y xy 2 = xal(X1/%0)y + 2]

is in @« (8 4 ). Of course, the same trick works if x, < x1.

To complete the proof it is necessary to consider the cases when a, 8, and v
are not all > 0. If any one of the three equals 0, the proof is easy and the cases
involving @ < 0 can be derived immediately once all the possibilities for 3
and v have been accounted for. Thus we assume a > 0 and consider three
cases: B, ¥ <0, and 3 <0, v >0, and 3 >0, v < 0. The first follows
immediately from the case already proved, and the third follows from the
second by interchanging 8 and vy. Therefore we concentrate on the case
B8 <0, v > 0. There are then two possibilities:

(1) B4 v 2 0. Then
a-y=a [(B+y]1+18)=a- B+ +a- b

RS
a-B4+7y) ==(@-18) +av
=a-B+ay.
(2) B84+ v <0. Then
a Bl=a-IB+vI+v) =a- B+ +a,
SO

a B4y == B+ = =@ B ey =aftavl

This proof completes the work of the chapter. Although long and frequently
tedious, this chapter contains results sufficiently important to be read in detail
at least once (and preferably not more than once!). For the first time we know
that we have not been operating in a vacuum—there is indeed a complete
ordered field, the theorems of this book are not based on assumptions which
can never be realized. One interesting and horrid possibility remains: there
may be several complete ordered fields. If this is true, then the theorems of
calculus are unexpectedly rich in content, but the properties P1-P13 are
disappointingly incomplete. The last chapter disposes of this possibility;
properties P1-P13 completely characterize the real numbers—anything that
can be proved about real numbers can be proved on the basis of these proper-
ties alone.

PROBLEMS

There are only two problems in this set, but each asks for an entirely different
construction of the real numbers! The detailed examination of another con-
struction is recommended only for masochists, but the main idea behind these
other constructions is worth knowing. The real numbers constructed in this
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chapter might be called “‘the algebraist’s real numbers,” since theyv ==
purposely defined so as to guarantee the least upper bound property, wziz=
involves the ordering <, an algebraic notion. The real number system ccz-

structed in the next problem might be called “‘the analyst’s real numbers.
since they are devised so that Cauchy sequences will always converge.

1. Since every real number ought to be the limit of some Cauchy seque=:=
of rational numbers, we might try to define a real number to be a Caucz=
sequence of rational numbers. Since two Cauchy sequences might coz-
verge to the same real number, however, this proposal requires sor=

modifications.

(a) Define two Cauchy sequences of rational numbers {a,} and {4, to ¢

equivalent (denoted by {a,} ~ {b,}) if lim (an — b,) = 0. Prove tzz:

{an) ~ {an}, that {a,} ~ {b,} if {6,} ~ {an}, and that {a,} ~ |-
if {a,} ~ {bn} and {b,} ~ {ca}.

(b) Suppose that « is the set of all sequences equivalent to {a,}, and 3 =
theset of all sequences equivalent to {,}. Prove thateithera N 3 = &
ora=f. (IfaM B = @, then there is some {c¢,} in both a and 8. Show
that in this case « and (8 both consist precisely of those sequences

equivalent to {¢,}.)

Part (b) shows that the collection of all Cauchy sequences can be sp.i:
up into disjoint sets, each-set consisting of all sequences equivalent o
some fixed sequence. We define a real number to be such a collectior.
and denote the set of all real numbers by R.

(¢) If @ and B are real numbers, let {4, } be a sequence in @, and {4, 2
sequence in 8. Define @ + 8 to be the collection of all sequences
equivalent to the sequence {a, + b,}. Show that {a, + b, is =
Cauchy sequence and also show that this definition does not deper.c
on the particular sequences {a,} and {4,} chosen for a and 8. Checx
also that the analogous definition of multiplication is well defined.

(d) Show that R is a field with these operations; existence of a multiplica-
tive inverse is the only interesting point to check.

(e) Define the positive real numbers P so that R will be an ordered field.

(f) Prove that every Cauchy sequence of real numbers converges.
Remember that if {a,] is a sequence of real numbers, then each «; is
itself a collection of Cauchy sequences of rational numbers.

2. This problem outlines a construction of “the high-school student’s real
numbers.” We define a real number to be a pair (e, {4,}), where a is an
integer and {4,} is a sequence of natural numbers from 0 to 9, with the
proviso that the sequence is not eventually 9; intuitively, this pair repre-

sents a + b,10~™. With this definition, a real number is a very con-

n=1
crete object, but the difficulties involved in defining addition and mult-
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plication are formidable (how do you add infinite decimals without
worrying about carrying digits infinitely far out?). A reasonable approach
is outlined below; the trick is to use least upper bounds right from the
start.

(a)

(b)

Define (a, {ba}) < (¢, {dn}) if a < ¢, or if a = ¢ and for some n we
have b, < d, but b; = d; for 1 < j < n. Using this definition, prove

the least upper bound property.
k

Given a = (a, {6,}), define o = a + 2 b,107™; intuitively, aj is
n=1
the rational number obtained by changing all decimal places after
the kth to 0. Conversely, given a rational number r of the form
k

a+ E 5,10, let 7/ denote the real number (a, {6,’}), where
n=1

b, = byfor1 < n < kandb,’ = 0forn > k Nowfora = (g, {bn})
and 8 = (¢, {d,}) define

o 4+ B = sup {(ex + Bi)’: k a natural number}
(the least upper bound exists by part (a)). If multiplication is defined
similarly, then the verification cf all conditions fer a field is a straight-

forward task, not highly recommended. Once more, however,
existence of multiplicative inverses will be the hardest.



CHAPTER

UNIQUENESS OF THE REAL NUMBERS

We shall now revert to the usual notation for real numbers, reserving boldface
symbols for other fields which may turn up. Moreover, we will regard integers
and rational numbers as special kinds of real numbers, and forget about the
specific way in which real numbers were defined. In this chapter we are
interested in only one question: are there any complete ordered fields other
than R? The answer to this question, if taken literally, is “yes.”” For example,
the field F3 introduced in Chapter 25 is a complete ordered field, and it is cer-
tainly not R. This field is a “silly” example because the pair (g, @) can be
regarded as just another name for the real number «; the operations

(@ a) + (b,8) = (a+b,a+b),
(a,a)-(b,b)z(a-b,a-b),

are consistent with this renaming. This sort of example shows that any
intelligent consideration of the question requires some mathematical means
of discussing such renaming procedures.

If the elements of a field F are going to be used to rename elements of R,
then for each ¢ in R there should correspond a “name” f(a) in F. The notation
f(a) suggests that renaming can be formulated in terms of functions. In order
to do this we will need a concept of function much more general than any
which has occurred until now; in fact, we will require the most general notion
of “function” used in mathematics. A function, in this general sense, is simply
a rule which assigns to some things, other things. To be formal, a function is a
collection of ordered pairs (of objects of any sort) which does not contain two
distinct pairs with the same first element. The domain of a function f is the
set 4 of all objects ¢ such that (g, 4) is in f for some &; this (unique) & is denoted
by f(a). If f(a) is in the set B for all 2 in A, then fis called a function from A4
to B. For example,

if f(x) = sin x for all x in R (and f is defined only for x in R), then f is a
function from R to R; it is also a function from R to [—1, 1];

if f(z) = sin 2 for all z in C, then f is a function from C to C;

if f(z) = ¢ for all zin C, then fis a function from C to C; it is also a func-
tion from C to {z in C: z  0};

6 is a function from {zin C:z 0} to {xin R: 0 < x < 27};

if f is the collection of all pairs (g, (e, @)) for a in R, then fis a function
from R to Fj.
567
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DEFINITION

Suppose that F; and F;, are two fields; we will denote the operations in F-
by @, O, etc. and the operations in F; by =+, -, etc. If 4y is going to be con-
sidered as a collection of new names for elements of i, then there should be a
function from F; to F, with the following properties:

(1) The function f should be one-one, that is, if x # y, then we should
have f(x) # f(y); this means that no two elements of /1 have the
same name.

(2) The function f should be “onto,” that is, for every element z in F:
there should be some x in F; such that z = f(x); this means that every
element of F, is used to name some element of Fi.

(3) For all x and y in F; we should have

flx &) = fx) + f(9),
flx ©3) = f(x) - f);

this means that the renaming procedure is consistent with the opera-
tions of the field.

If we are also considering F; and F, as ordered fields, we add one more
requirement:

(4) If x @ y, then f(x) < f(y).

A function with these propeft/i/es is called an isomorphism from Fi to Fu.
This definition is so important that we restate it formally.

If F, and F, are two fields, an isomorphism from F; to [z is a function f
from F, to F, with the following properties:

(1) If x 5 y, then f(x) #= f(y). |
(2) If z is in F,, then z = f(x) for some x in Fi.
(3) If x and y are in Fi, then

flx ® ) = fx) + fO) |
flx ©9) = fx) - fO). ,

If F; and F, are ordered fields we also require:

(4) If x @ y, then f(x) < f(y).

The fields F; and F, are called isomorphic if there is an isomorphism
between them. Isomorphic ficlds may be regarded as essentially the same—any
important property of one will automatically hold for the other. Therefore,
we can, and should, reformulate the question asked at the beginning of the
chapter; if F is a complete ordered field it is silly to expect F to equal R—
rather, we would like to know if Fis isomorphic to R. In the following theorem,
F will be a field, with operations 4 and -, and “positive elements” P; we
write ¢ < b to mean that 5 — ¢ is in P, and so forth.
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If F'is a complete ordered field, then F is isomorphic to R.

Since two fields are defined to be isomorphic if there is an isomorphism
between them, we must actually construct a function f from R to F which is an
isomorphism. We begin by defining f on the integers as follows:

f(0) = 0,
fm)y =14 -+ 41 forn>0,
fn) = =1+ - - 4+1) forn<O.

|n] times
It is easy to check that

flm +n) = f(m) + f(n),
f(m-n) = f(m) - f(n),

for all integers m and », and it is convenient to denote f(n) by n. We then
define f on the rational numbers by

fim/n) = m/n=m-n"!

(notice that 14 - - - 4152 0 if n > 0, since F is an ordered field). This
definition makes sense because if m/7 = k//, then m{ = nk,som-1l = k- n,
som-+n~* = k-1 Itis easy to check that

flri+1g) = f(”l) =+ f(rs),
flr-re) = f(r1) * fra),

for all rational numbers r; and r,, and that f(ri) < f(re) if r1 < 7s.

The definition of f(x) for arbitrary x is based on the now familiar idea that
any real number is determined by the rational numbers less than it. For any
xin R, let 4, be the subset of 7 consisting of all f(r), for all rational numbers
7 < x. The set 4; is certainly not empty, and it is also bounded above, for if
7o is a rational number with ro > x, then f(ro) > f(r) for all f(r) in A,. Since F
is a complete ordered field, the set 4, has a least upper bound; we define f(x)
as sup 4,.

We now have f(x) defined in two different ways, first for rational x, and
then for any x. Before proceeding further, it is necessary to show that these two
definitions agree for rational x. In other words, if x is a rational number, we

want to show that
Sup AI = f(x)a

where f(x) here denotes m/n, for x = m/n. This is not automatic, but depends
on the completeness of F; a slight digression is thus required.
Since F'is complete, the elements

14 -+ - 41 for natural numbers n

n times
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form a set which is not bounded above; the proof is exactly the same as the
proof for R (Theorem 8-2). The consequences of this fact for R have exact
analogues in F: in particular, if a and & are elements of F with @ < &, then
there is a rational number 7 such that

a < flr) <b.

Having made this observation, we return to the proof that the two definitions
of f(x) agree for rational x. If y is a rational number with y < x, then we have
already seen that f(y) < f(x). Thus every element of 4, is < 7(x). Consequently,

sup 4, < f(x).
On the other hand, suppose that we had
sup 4, < f(x).
Then there would be a rational number 7 such that
—sup 4, < f(r) < f(x).

But the condition f(r) < f(x) means thatr < x, which means that f(r) is in the
set A,; this clearly contradicts the condition sup 4, < f(r). This shows that
the original assumption is false, so

sup 4, = f(x).

We thus have a certain well-defined function f from R to F. In order to
show that f is an isomorphism we must verify conditions (1)~(4) of the defini-
tion. We will begin with (4).

If x and y are real numbers with x < y, then clearly 4, is contained in 4,.
Thus

f) = sup 4, < sup 4, = £().

To rule out the possibility of equality, notice that there are rational numbers

r and s with
x<r<s<y.

We know that f(r) < f(s). It follows that

f@x) S f(r) < fl) (0.
This proves (4).

Condition (1) follows immediately from (4): If x 5 y, then either x <y
or y < x; in the first case f(x) < f(3), and in the second case f(») < f(x); in
either case f(x) # f(¥).

To prove (2), let 2 be an element of F, and let B be the set of all rational
numbers 7 with f(r) < a. The set B is not empty, and it is also bounded above,
because there is a rational number s with f(s) > a, so that f(s) > f(r) for r in
B, which implies that s > . Let x be the least upper bound of B; we claim
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that f(x) = a. In order to prove this it suffices to eliminate the alternatives
fx) < a,
a < f(x).

In the first case there would be a rational number r with

fl) < f(r) < a.

But this means that x < r and that 7 is in B, which contradicts the fact that
x = sup B. In the second case there would be a rational number r with

a < f(r) < f(x).
This implies that 7 < x. Since ¥ = sup B, this means thatr < sfor some sin B.
Hence

— ) < f(5) < q,

again a contradiction. Thus f(x) = e, proving (2).
To check (3), let x and y be real numbers and suppose that f(x 4 y) =

f(x) + f(y). Then either
fl+9) < fx) +f0) or fG) 4+ () < flx+ ).
In the first case there would be a rational number r such that
fle+y) < f(r) < f@) + ().

But this would mean that
xt+y<r.

Therefore r could be written as the sum of two rational numbers
r =71+ r;, where x <r;andy < ..

Then, using the facts checked about f for rational numbers, it would follow that

f@) = f(r1 + 1) = flr1) + f(r2) > f(x) + (),

a contradiction. The other case is handled similarly.
Finally, if x and y are positive real numbers, the same sort of reasoning shows
that

fl-y) = f@x) - f0);

the general case is then a simple consequence. |

This theorem brings to an end our investigation of the real numbers, and
resolves any doubts about them: There i5s-a complete ordered field and, up to
isomorphism, only one complete ordered field. It is an important part
of a mathematical education to follow a construction of the real numbers in
detail, but it is not necessary to refer ever again to this particular construction.
Itis utterly irrelevant that a real number happens to be a collection of rational
numbers, and such a fact should never enter the proof of any important



