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Every finite division ring is a field Chapter 5

Rings are important structures in modern algebra. If a ring & has a mul-
tiplicative unit element 1 and every nonzero element has a multiplicative
inverse, then R is called a division ring. So, all that is missing in R from
being a field is the commutativity of multiplication. The best-known exam-
ple of a non-commutative division ring is the ring of quaternions discovered
by Hamilton. But, as the chapter title says, every such division ring must of
necessity be infinite. If R is finite, then the axioms force the multiplication
to be commutative.

This result which is now a classic has caught the imagination of many math-
ematicians, because, as Herstein writes: “It is so unexpectedly interrelating
two seemingly unrelated things, the number of elements in a certain alge-
braic system and the multiplication of that system.”

Theorem. Every finite division ring R is commutative.

Ernst Witt

This beautiful theorem which is usually attributed to MacLagan Wedder-
burn has been proved by many people using a variety of different ideas.
Wedderburn himself gave three proofs in 1905, and another proof was given
by Leonard E. Dickson in the same year. More proofs were later given by
Emil Artin, Hans Zassenhaus, Nicolas Bourbaki, and many others. One
proof stands out for its simplicity and elegance. It was found by Ernst Witt
in 1931 and combines two elementary ideas towards a glorious finish.

Proof. OQur first ingredient comes from a blend of linear algebra and
basic group theory. For an arbitrary element s € R, let (s be the set
{z € R : zs = sz} of elements which commute with s; C; is called the
centralizer of s. Clearly, Cs contains 0 and 1 and is a sub-division ring
of R. The center Z is the set of elements which commute with all elements
of R, thus 7 = ﬂse g Cs. In particular, all elements of Z commute, 0 and 1
are in Z, and so Z is a finite field. Let us set | Z| = q.

We can regard R and C; as vector spaces over the field Z and deduce that
|R| = ¢", where n is the dimension of the vector space R over Z, and
similarly |Cs| = q™ for suitable integers ns > 1.

Now let us assume that R is not a field. This means that for some s € R
the centralizer C; is not all of R, or, what is the same, n, < n.

On the set R* := R\{0} we consider the relation

1

r~r <= 1 =z lrz forsomez e R*
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It is easy to check that ~ is an equivalence relation. Let
Ay = {a7 sz ¢ R*}

be the equivalence class containing s. We note that |A;| = 1 precisely
when ¢ is in the center . S0 by our assumption, there are classes A, with
|As| > 2. Consider now for s € R* the map fs : * — x lsz from R*
onto A,. Forz,y € R* we find

Tsy = (ya7')s =s(yz™")

— yle ! = yclla,

2 Vs =y~

for CF := C,\{0}, where Cax = {zx: z € C'}} has size |C¥|. Hence any
element £~ 'sx is the image of precisely |C?] = ¢™ — 1 elements in B~
under the map f;, and we deduce |R*| = |A,]|C?|. In particular, we note
that

R q" —1 N
= = |A,| 1is an integer for all s.
s ¥
We know that the equivalence classes partition R*. We now group the
central elements Z* together and denote by Ay, ..., A, the equivalence

classes containing more than one element. By our assumplion we know
t > 1. Since |B*| = |Z*| + E:;:] |Ax|, we have proved the so-called
cluss formula
t i
n _ _ q —1
q—lfq1+ZWh4, (1)
k=1

where we have 1 < 5'3,,‘,;;_11 & N forall k.

With (1) we have left abstract algebra and are back to the natural numbers.
Next we claim that g™+ —1 | g™ —1 implies ng | n. Indeed, write n = ang+r
with () < r < ng, then ¢ — 1| g®™***7 — 1 implies

g —1 I(qank+'r‘ _ 1) _ (an _ 1) —_ an(q(a— D +r _ 1),

and thus g™ — 1| gle— e+ _ 1 since g™+ and g™ — 1 are relatively
prime. Continuing in this way we find g™ — 1|g" — 1 with 0 <\ v < ng,
which is only possible for r = 0, that is, ny [ 7. In summary, we note

iy | forall k. ()

Now comes the second ingredient: the complex numbers C. Consider the
polynomial ™ — 1. Its roots in © are called the n-th reots of uniry. Since
A" = [, all these roots A have || = 1 and lie therefore on the unit circle of
the complex plane. In fact, they are precisely the numbers A, = e =
cos(2kn/n) + isin(2kn/n}, 0 < k < n — 1 (see the box on the next
page). Some of the roots X satisfy A2 = 1 for d < 7 for example, the
root A = —1 satisfies A> = 1. For a root A, let d be the smallest positive
exponent with A% = 1, that is, d is the order of A in the group of the roots

of unity. Then d | n, by Lagrange’s theorem (“the order of every element of
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a group divides the order of the group” — see the box in Chapter 1). Note

that there are roots of order 12, such us Ay = ¢ = .

Raots of unity
Any complex number z = = + iy may be written in the “polar’” form

z = re’¥ = rlcosg +ising),

where r = |z| = /u? + y? is the distance of = to the origin, and y is
the angle measured from the positive r-axis. The n-th roots of unity
are therefore of the form

Zkwi

A =c¢ n = cos(2kmw/n) + isiu(2kw/n), 0<k<n-—1,

since for all &
Y = e — cos(2km) + isin(2kw) = 1.

We obtain these roots geometrically by inscribing a regular n-gon
into the unit circle. Note that A, = C¥ forall &, where { = 5% Thus
the n-th roots of unity form a cyclic group {¢, ¢%, ..., ("L " =1}
of order .

Now we group all roots of order d together and set

tqle) = H (x — A).

A of order d

Note that the definition of ¢;(z) is independent of n. Since every root has
some order d, we conclude that

2 =1 = [] dulz). (3)

dln

Here is the crucial observation: The coefficients of the polynomials ¢, ()
are integers (thatis, ¢, (r) € Z[i] for all 72), where in addition the constant
coefficient is either 1 or —1.

Let us carefully verify this claim. For n = 1 we have | as the only root,
and so ¢, (x) = = - 1. Now we procecd by induction. where we assume
@a(z) € Z[x] for all d < n, and that the constant coefficient of ¢g(x) is 1
ar —1. By (3},

™ — 1 = plx)d,(r) (4)
£ ) €
where p{a) = 3 pyzf, n(2) = 3 arx®, withpy = lorpy = —1.
§=0 k=0

Since — 1 = pyug, we see ag € {l, —1}. Suppose we alreudy know that
0.1, ..., tg—1 = Z. Computing the coefficient of z* on both sides of (4)

z = ret¥

Yy = rsing

T = Treosy

Az

The roots of unity for n = 6
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lg — ul > |g—1

we find
k

i ‘
Zj)ja;c_j = PiQk—5 + Pk € Z.
4=0 g=1
By assumption, all ag, .. ..a,—1 (and all p;) are in Z. Thus pyay and hence
2, must also be integers, since py is 1 or —1.
We are ready for the coup de grice. Let ny |n be one of the numbers
appearing in (1). Then

-1 = H dalr) = (2™ — Dop(z) H dalr).
d|n dln,ding, d#n
We conclude that in Z we have the divisibility relations

gt -1

prt (5)

drnlg) | g™ =1 and ¢H(Q) |
Since (5) holds for all &, we deduce from the class formula (1}

¢nlq)|q— 1.

but this cannot be. Why? We know ¢, {x} = []{z — A) where A runs
through all roots of ™ — 1 of order n. Let X = a + ib be one of those roots.
By n > 1 (because of I} # Z) we have A # 1, which implies that the real
part @ is smaller than 1. Now |Al2 = a2 4+ 4% = 1, and hence

g - AP = lg—a—ibf = (g—af+ b
= ¢ -2aq+a*+0 = ¢*—2a9+1
> gd-2¢+1 {because of a < 1)
= {¢-1)%
and so g — 3‘| > ¢ — 1 holds for all roots of order n. This implies
bal@] = [Jla—Al>q—1,
X

which means that ¢, {q) cannot be a divisor of ¢ - 1, contradiction and end
of proof. O
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