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abc TRIPLES
GREG MARTIN AND WINNIE MIAO

ABSTRACT. Theabc conjecture, one of the most famous open problems in numbkeryhclaims
that three positive integers satisfyiag+ b = ¢ cannot simultaneously have significant repetition
among their prime factors; in particular, the product ofdistinct primes dividing the three integers
should never be much less thanTriples of numbers satisfying + b = ¢ are calledubc triples if

the product of their distinct prime divisors is strictly $ethanc. We catalog what is known about
abc triples, both numerical examples found through computadiod infinite familes of examples
established theoretically. In addition, we collect mdiivas and heuristics supporting théc con-
jecture, as well as some of its refinements and generalirgtand we describe the state-of-the-art
progress towards establishing the conjecture.

1. INTRODUCTION

A, B, C ... only in mathematics could such a trite trio of lestsignify a major outstanding
open problem with significant connections to multiple tepidheabc conjectureis a simple-to-
state yet challenging problem in number theory that has péghmathematicians for the past 30
years. It has become known for its large number of profourglications in number theory and
particularly in Diophantine equations; among these myc@mtsequences are Fermat’s last theorem
(up to finitely many counterexamples), Mordell’s conjeet[k2], and Roth’s theorem [5] (see [29]
for a more comprehensive list). Théc conjecture is deeply intriguing because it unveils some
delicate tension between the additive and multiplicatiapprties of integers, the bread and butter
of number theorists.

The purpose of this article is to discuss examples and amigins ofabc triples, which are
trios of integers demonstrating that th&: conjecture, if true, must be only barely true. To do so
we must first, of course, describe thig: conjecture itself. We begin with a preliminary definition:
the radical of an integem, denoted byR(n), is the product of all the distinct prime factors of
n. For examplef00 = 2* - 3 - 5% and soR(600) = 2 -3 -5 = 30. In other words,R(n) is the
largest squarefree divisor ef The radical is a multiplicative function: in particulagrfpairwise
relatively prime integers, b andc, we haveR(abc) = R(a)R(b) R(c). We may now state (the first
version of) thexbc conjecture, which postulates that the radical of threetaddly-related numbers
cannot often be much smaller than the numbers themselves.

abc Conjecture, Version 1. For everye > 0, there exist only finitely many triples;, b, ¢) of
relatively prime positive integers satisfyingt b = ¢ for which

R(abc) < c'™*.

A typical integer’s radical is not too much smaller than thieger itself, and s&(abc) is often
about as large agc—that is, much larger than Yet there are rare occurrences of triplesb, c)
satisfying the hypotheses of théc conjecture where: is in fact greater tharR(abc). These
special cases are referred toas triples; the smallest such example(ig, b,c¢) = (1,8,9), for
which R(abc) = R(36) = 6 < 9.
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Furthermore, one can even construct an infinite sequenckcdfiples! One such example is
(a,b,c) = (1,9™ — 1,9"): since9” — 1 = 1" — 1 = 0 (mod8), we see thag divides9™ — 1 for
every positive integen. Writing b = 23k for some positive integekt, we calculate thak(abc) =
R(a)R(b)R(c) = 1- R(2%k) - 3 is at mosk - 3 = 6k, which is less tham = 8k + 1 for everyn.
We call this annfinite family ofabc triples; we will see many more infinite families in Section 3.

As is often the case, the literature contains various etpnvéormulations of thebc conjecture,
a few of which we list now (others will appear as we proceedubgh the paper). For one thing,
theabc conjecture is just as commonly stated with the epsilon omfp®site side:

abc Conjecture, Version 2. For everye > 0, there exist only finitely many triples, b, ¢) of
relatively prime positive integers satisfyingt b = ¢ for which

¢ > R(abe)'*e.

Version 1 and Version 2 can be effortlessly obtained fromheatber, although we need to
remember that both statements are “for every 0” statements: for example, the inequality in
Version 1 with a givere implies the inequality in Version 2 with replaced by;= . Different
versions are more or less useful in different contexts;igarg, for instance, is closely connected
to the “quality” of anabc triple, a quantity we will define in Section 2.

For a givene, if there are only finitely manyibe triples for which R(abe) < ¢'=¢, then there
are only finitely many values ak(abc) /c'~* that are less thah and we can choose the minimum
such value and call il (¢), say. Therefore Version 1 of théc conjecture implies a new version:

abc Conjecture, Version 3. For everye > 0 there exists a positive constafit(c) such that all
triples (a, b, ¢) of relatively prime positive integers with+ b = ¢ satisfy

R(abc) > K(g)c' e,

This new formulation really is equivalent to Version 1—mauecisely, Version 3 with a given
positives implies Version 1 for any larger. There is a parallel reformulation from Version 2:

abc Conjecture, Version 4. For everye > 0 there exists a positive constahit (¢) such that all
triples (a, b, ¢) of relatively prime positive integers with+ b = ¢ satisfy

c < K'(¢)R(abc)*e.

It might be nice to be able to leave out the hypothesis thahtiee integersa, b, ) are relatively
prime; however, this condition is in fact indispensabld. iglworthwhile to point out the slight
difference between a set of integers berafatively primeand beingpairwise relatively prime
relatively prime means there is no common prime factor shayeall its elements, while pairwise
relatively prime means that any two chosen integers froms#ftehave no common factor. For
example, the s€f6, 10, 21} is relatively prime but not pairwise relatively prime. Ramately in our
case, theibc conjecture deals only with trios of integers related by theationa + b = ¢; as it
turns out, this equation ensures that any relatively prietg:sb, ¢) must also be pairwise relatively
prime.) Without that hypothesis, nothing would stop us fromitiplying any given triple by a huge
power of a prime, which would increaseas much as we wanted while only increasing the radical
R(abc) by a factor ofp at most. The most extreme example of this undesirable iofiagithe triple
(a,b,c) = (27,27, 2"+1), for which ¢ = 27! can be made as much larger thafubc) = 2 as we
wish.

Likewise, the epsilon appearing in the statements of th@gcture might seem like a nuisance,

but it turns out to be a necessity. We have already shown talbe the more simplistic assertion
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that ¢ can be greater than the radida(abc) only for finitely many triples; it is even false that
the ratioc/R(abc) is bounded above. Section 3 is devoted to recording seveaahgles that
refute these epsilon-less statements; many of these ezarap “well known to the experts” yet
decidedly hard to find in the literature, and we hope gatlgetirem together here (along with
citations, where known) is a helpful service to those stagyhis topic.

Before we take on that task, however, we spend some time itho8€eZ looking at some nu-
merical examples aibc triples that have been garnered over the years and by exagniarious
computational techniques of obtaining such triples. Aftexsenting the aforementioned infinite
families of abc triples in Section 3, we then delve into the motivation behtihis deep conjec-
ture in Section 4. Lastly, in Section 5 we present some refamsiand generalizations of thée
conjecture, and discuss progress towards the conjectdrésacurrent status. Although some of
these later results and extensions are a bit technicalatbe majority of the material we present
is pleasantly elementary and accessible.

2. NUMERICAL EXAMPLES OF abc TRIPLES

Because thebc conjecture has become so prominent in the last thirty yeamsesponding
roughly to the era of widespread and easily accessible ctatipn, it is no surprise that people
have developed a sustained interest in compiling numeziaahples ofibc triples. As a matter of
fact, one can go to an onlinéc triples database [18] and list adbc triples of positive integers up
to any bound less that0®, or input any integer in that range to search dée triples containing
it. For instance, there are exactly sevén triples withc = 10%: the one with the largest value
of bis (a,b,c) = (351,297,99,648,703, 100,000,000) = (3* - 4,337, 77 - 112,28 - 58), for which
R(abc) = 10,018,470.

In fact, computations aibc triples have been carried out for much larger ranges. Tilgisach
computations record the triples they find according to ttegiality”:

Definition. Given a triple(a, b, ¢) of relatively prime positive integers such that- b = ¢, the
quality ¢(a, b, c) of the triple is defined to be

log ¢
bc)= ——"—.
a(a: b ) = R abo)

For example, the quality of the smallesic triple is ¢(1,8,9) = {ggz = 1.22629.... By this
definition, a triple will be arubc triple only if ¢(a, b, ¢) > 1. And indeed, we can reformulate the

abc conjecture yet again, by solving the inequality in VersidioR21 + &:

abc Conjecture, Version 5. For everye > 0, there exist only finitely many triples, b, ¢) of
relatively prime positive integers satisfying+ b = ¢ for whichq(a, b, ¢) > 1 + ¢.

By looking at de Smit’s website [10], we see for example thrabag numbers with at most
twenty digits, there are exacths6 abc triples of quality at least.4. Atop that list is the triple

(a,b,c) = (2,6,436,341, 6,436,343) = (2, 3% - 109, 23%), (1)

for whichq(a, b, c) = 1.62991 .. .; this is the highest quality of any knowibc triple (and possibly
the highest quality of anybc triple in the universe!). This triple was discovered in 198/7the

French mathematician E. Reyssat (apparently by “bruteefpiccording to [20, page 137]). de
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Smit’s list also includes anbc triple, discovered by I. J. Calvo, wherehas a whoppin@,958
digits: the triple

(a,b,c) = (33 313 A,
5362 . 7109 . 117 . 17326 . 3711 . 5333 . 59179 . 67137 . 7976 . 103348 . 10912 . 113103 . 13142 . 15112 . 163166,
2465 . 1376 . 1957 . 23611 . 2919 . 4111 . 4398 . 6184 . 7113 . 73250 . 8330 . 8910 . 9780‘
+101% 1277 - 137% - 1397 - 167%% - 173%)  (2)

has quality at least01522. .., whereA = (c—b)/93% is a number witt2,854 digits. (Interestingly,

as is often the case with large numbedsis easily shown to be composite—by calculating that
24-1 £ 1 (modA) and invoking Fermat’s little theorem, for example—but féstorization is
unknown.)

Reken mee met ABGosted by the Mathematical Institute of Leiden Univer§a®], is a dis-
tributive computing program aiming to collect experimedtta on theibc conjecture. The project
is based on the BOINC platform [2], and any individual withaputer can download the soft-
ware and join in the hunt fotibc triples. The project currently has ovés0,000 users and has
tested nearly three quintillion triples—not too much ldsatthe number of insects on Earth!

People have developed many different techniques for findbagriples, using tools from all
parts of number theory and neighboring fields. To give a flafdhe wide variety of techniques,
we describe six of them now.

2.1. ABC@home algorithm. The ABC@home project, which supports tReken mee met ABC
distributed computation described above, uses the fatigwigorithm [1] to search exhaustively
for abc triples.

Suppose thafa, b, ¢) is anabe triple of numbers all less thalV. Rename the integefs:, b, ¢}
as{z,y, z} so thatr, y, andz have the smallest, middle, and largest radical, respégtiGnce
(a,b,c) is anabc triple, we haveR(a) R(b)R(c) < ¢ < N, and soR(z)R(y)R(z) < N. From this
inequality and the inequalitieB(z) < R(y) < R(z), it is easy to deduce thdt(y) < v/N and
R(z) < N/R(y)>.

We may therefore search fabc triples up toN by sorting them according to their smallest
two radicalsR(z) and R(y), both of which are at most'N. First, we make a list of all of the
squarefree numbers less thaiV (by a variant of the sieve of Eratosthenes, say). For eveary pa
of relatively prime numbers$r, s) from this list that satisfy- < N/s?, we calculate all pairs of
numbers(z, y) for which R(z) = r and R(y) = s. There are two ways of completing the pair
(x,y) to a triple where two numbers sum to the third: we can seteithe x + y or z = |z — y|.

If s < R(z) < N/rs, then we have discovered a nei triple, namely the sorted ordering of

(z,y, 2).

2.2. Continued fractions. The(simple) continued fractioaf an irrational numbef is an expres-

sion of the form .
0=ag+——5—, (3)
ay + a2+a3~lrm
whereq, is an integer and; is a positive integer for eagh> 1. Calculating the “partial quotients”
ap, ai, ... of agivenirrational numbetturns out to be a simple variant of the Euclidean algorithm

(which at its heart is simply division with remainder). If weplace the infinite tait; + ﬁ
J
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of the continued fraction with; itself, we obtain a rational number called tjte convergento 6.
The theory of these convergents, and how they comprise gtedtéonal approximations in a
suitable sense, is extremely interesting [30, Chapter 7].

For example, we calculate the continued fraction of theioral number/109, which has been
cunningly chosen for its relationship to Reyssat’s exaniple

: 1
Y109 = 2 + .
1+ —L—
4 1

77,783+ gt —

Noting that the quantityt + is extremely close td, we form the approximation

1
77,733+ 57—

1 23
V109 ~ 2 + — =
1+ 9

1+5

which is the third convergent t¢/109. (In this particular case, we might have found this approx-
imation just by examining the decimal expansipho9 = 2.555555399...1) This approximation
tells us that9® - 109 ~ 23°, and in fact their difference is exacty; yielding Reyssat'’s triple
(2,9° - 109, 23%).

In general, we begin with an irrational ropt= /m of an integern and compute its continued
fraction. At any point, when we see a relatively large padisotienta;;, we truncate the infinite
continued fraction (3) aftet; to obtain thejth convergent, which we write ag'q. We have thus
found integerg andq such thatp/q ~ /m, or equivalentlyng® ~ p*. We then check the triple
candidate|mqg* — pk|, mq®, p*) to see whether its quality exceetls

For the curious reader, [7] contains a list of ninety triples, all with quality exceeding.4,
that can be found via this continued fraction method.

2.3. The LLL method. Another interesting method to findc triples, proposed by Dokchitser [11],
employs a famous “lattice basis reduction” algorithm by $tes, Lenstra, and Lovasz [24]. |At-
ticeis a discrete subgroup &" that is closed under addition; for example, the usual intkzgéce
73 is the set of all integer linear combinations of the vectar$, 0), (0,1,0), (0,0, 1) insideR3.
Those three vectors formbasisfor the integer lattice, but so do sé\2, 34, 39), (20, 57, 65), (95, 269, 309);
just like vector spaces, a lattice can have many basis. Givaamplicated basis for a lattice, like
this latter one, thé.LL algorithm converts it into a much nicer basis, like the former one—one
with smaller entries, and for which the basis elements aaglyyerthogonal.

To apply this tool to the construction abc triples, we select large integerss, ¢ that are com-
parable in size and have very small radicals (high powermaflgprimes, for example, or products
of these). If we can find small integetsv, w such that

ur +vs +wt = 0, (4)

then(|u|r, |v]s, |w|t) has a good chance of being @ triple: the radicals of, s, t were all chosen
to be small, and the integersg|, |v|, |w| themselves are small and can only contribute so much to
the radical of the product.

The set of all integer vecto(s:, v, w) satisfying equation (4) is a two-dimensional sublattice of
Z2; however, the usual methods of finding a basis for this stibéatesult in basis vectors with
very large entries. We run the LLL algorithm on this basis ol fa reduced basid,, by} for the

lattice of solutions to equation (4), where the new basigoreschave much smaller entries. We
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may now consider any linear combinatian v, w) = s;b; + soby, Wheresy, s, are small integers,
and test the tripl¢|u|r, |v|s, |w]|t) to see if it is ambc triple.

In this fashion, Dokchitser was able to obtain 41 néwtriples, including(13'° - 372,37 - 195 .
71%.223,22%6 . 512.. 1,873) which has a quality of 5094, the11th highest quality known.

2.4. Transfer method. Yet another approach to finding newi triples is to take existing triples
and “transfer” them, using certain polynomial identities¢create new triples.

For example, note thatif + b = ¢, thena® + ¢(b — a) = b%, sincec(b —a) = (b+a)(b—a) =
b*> — a*. Note also that ifR(abc) < ¢, then

R(abc)

C

R(a*-c(b—a)-b*) < R(a)R(b)R(c)R(b — a) = cR(b—a) <clb—a)<b® (5)

as well. In other words, ifa, b, ¢) is anabc triple with a < b, then(a?, c(b — a), v?) is also ambe
triple. Indeed, if the quality(a, b, ¢) is larger thar, then a quick calculation [43, page 16] shows
that

2 b
q(a® c(b—a),b*) > a(a,b,¢) 1.
q

(a,b,c) +1 ~
For future reference, we also note a slight improvemen(,ib, ¢) is anabc triple wherea andb
are both odd (which forces bothtandb — a to be even), then

C

R(a® - c(b—a)-b*) < R{abd)

R(a® - c(b—a) - b*)

c b—a b—a b?

When we are looking for good numerical examples, moreovercan try this transfer method
on many knownabc triples and hope for some extra repeated factors ina. For example,
we can start with the smallbc-triple (7,243, 250), whose radical i210 and whose quality is
about1.03261. Using the above transfer identity leads to the trifi 250(243 — 7),243%) =
(49, 59,000, 59,049). We know from the bound (5) that the radical of this new trijgleét most
210- (243 — 7). However2243 — 7 = 2259, and the factors df are dropped from the radical since
250 is already even. Consequently, the radical of this newdrigpbnly210 - 59 = 12,390, and the
quality of (49, 59,000, 59,049) is aboutl.16568, which is quite a bit better than the original triple.

The transfer method, then, is to start with existitig triples, apply a polynomial identity to
obtain a new triple, and then check for fortunate coincidsrtbat make the new triple even better
than we already knew it would be. It is an experimentation gawhere different starting triples
can yield results from mediocre to extremely good. In faa,can experiment not only with the
starting triple but with the polynomial identity as well! @@ other examples of such polynomial
transfers, which are all easily seen to be valid whena + b, include:

(b—a)? +4dab = ¢
a® 4+ b® = c(b? — ab + a?)
a*(a+3b) +b*(3a+b) =
a*(a+2b) + (b — a) = b*(2a + b)
27¢°(b — a) + a*(3a + 5b)*(3a + 2b) = b (5a + 3b)*(2a + 3b).
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Moreover, there is even a whole family of such identities

L)) (5 (o) -

j=0 j=0
which comes from splitting the binomial formula fag + b)™ at some term with index < k <
n— 1. (Note that the third identity on the above list is the- 3, &£ = 1 case of this general family.)
The interested reader can refer to [43, Section 2.3] for ailéet examination of these polyno-
mial transfers as a way of generating triples.

2.5. An elliptic curve method. Before describing the next method of finding examples/lof
triples, which was developed by van der Horst [43], we sayaerds abouelliptic curves For
our purposes, an elliptic curve can be defined as the set utfi@a of a suitable cubic equation
in two variables, such as (7) or (15). That set of solutioredes, of course, on what domain
we select for the variables; it turns out to be fruitful to smler the same equation with different
domains, as we will see below. Certainly, elliptic curves aery fascinating in their own right
(see [47] or [34], for example, where one can find all the fabisut elliptic curves that we describe
in this paper). For now, we need only to talk about the growgcsire of an elliptic curve; we will
mentionj-invariants in the next section and other elliptic curveaimants in Section 4.2.

Amazingly, the points on an elliptic curve can be turned iamoabelian group (once a “point
at infinity”, representing the group identity, is includadjing a suitable definition of addition:
three points on the elliptic curve sum to the identity prelsisvhen they are collinear. When
the variables are allowed to be complex numbers, the raguitbelian group is isomorphic to
a (two-dimensional) torus. On the other hand, if the coeffits and the variables of the cubic
equation are restricted to rational numbers, then the tiegudbelian group is finitely generated
(this is the Mordell-Weil theorem), thus having a free g&f'™* and a well-understood torsion
subgroup. (The rank, on the other hand, is not well undedsitogeneral, which is why it is one
of the subjects of the Birch and Swinnerton—Dyer Conjectone of the seven Clay Mathematics
Institute’s Millennium Problems [48]).

We now describe a slight variant of van der Horst’'s methodeafshing forabc triples. For any
fixed integersey < yo, Setk = y3 — x3 and consider the elliptic curve given by the equation

y =2’ +k, (7)

where the variables andy are allowed to be not just integers but rational numbers regs.
Whenever(z,y) = (%, ) is a point on this elliptic curve (for simplicity we assumath, ¢, andd
are positive), we have® = p3 + kd®. Clearly R(p3, kd®, ¢*) < kdpq < kdq?, and so this triple is
anabc triple whenevey; > kd, or equivalently whery > k; indeed, the largey is, the higher the
quality of the triple will be.

It is probably not the case thgi itself is larger thark; however, we can use the group operation
on the elliptic curve to search for rational solutions to @&ipn (7) other tharfzy, yo). Simply
adding the poin{z,, yo) to itself repeatedly (adding, that is, using the group lawtten elliptic
curve) yields a sequence of points on the elliptic curveighaipically infinite. van der Horst even
develops a way of predicting which elements of this sequanitdave largey-values: he writes
down a group homomorphism from the elliptic curve to the gmtle in the complex plane that
takes points with large coordinates to complex numbers he@ince it is easy to calculate which
powers of a complex number are closelfmne can take the corresponding multiplesaf, yo)

back on the elliptic curve and check how good the correspiiples’ qualities are. One feature
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of this method is that all three numbers in e triples it generates have small radicals, not just
one or two of them.

The exact algorithm and variants used by van der Horst [481i@®s 4.2—4.3] discovered
some notablebc triples. The point(z,y) = (53, %) on the elliptic curvey® = 2* + 30 does
not havey > 30, but fortunately the numerator of happens to be a square, and so we get
to divide the radical by an extra factor 7. The resultingabc triple (192,30 - 933,2893) =
(6,859, 24,130,710, 24,137,569) has radicaB00,390 and quality about.34778. Moreover, the al-
gorithm often finds rational solutions with huge numeratord denominators, and is thus suited
for finding enormousibe triples; van der Horst reports [43, Chapter 5] finding a poimtthe el-
liptic curvey® = 2® + 854 that yields ambc triple with quality aboutl.01635, where the largest

integer in the triple hag40 digits.

2.6. Differences of j-invariants. We conclude this section with some exaiie: triples that are
found unexpectedly when discussing factorizationsjeihvariants”.

There is a beautiful link between lattices and elliptic @svthrough two “elliptic functions”
studied by Weierstrass, it is known that every elliptic @pan be represented g% = 423 —
g2(T)x — g3(7), Whereg,(7) and g3(7) are invariants that correspond to a fixed lattice. More
specifically, they are the modular forms

B =60 S

m,ne” (mT + n)4
(m,n)#(0,0)
1
7) = 140 —_—
95(7) m;ez (mT +n)S
(m,n)#(0,0)

wherer, a complex number with positive imaginary part, determihesrelevant lattice as the set
of all numbers of the formn7+n with m, n integral. (This lattice, by the way, is exactly the lattice
one needs to quotient the complex plane by to realize thatielicurve; since a plane modulo a
lattice is a torus, this description corroborates the faat every elliptic curve is isomorphic to a
torus, as mentioned in the previous section.)

Now, we define thg-invariant j(7) of an elliptic curve by the formula

o 1Tasgi(n)
IO = 30— 218

This j-invariant is a modular function with ubiquitous remarl@bpkoperties and applications in
complex analysis, algebraic number theory, transcendéecey, and so on. When the argument
lies in an imaginary quadratic field(v/—d) for some positive integet, the valueg(7) are called
“singular moduli”, and the associated elliptic curves @sssextra endomorphisms and are said to
have “complex multiplication”. This singular modulus is@gebraic integer lying in some abelian
extension ofQ(v/—d); remarkably, the degree of its minimal polynomial is exacdte “class
number”h(—d), which is the number of binary quadratic form&’ + bxy +cy? of discriminant—d
that are not equivalent to one another under linear charfg@siables. In particular, by the Stark—
Heegner theorem [34, Appendix C, Section 11], there are thitieen negative discriminantsd
that have class number equalltsmamely—3, —4, —7, -8, —11, —12, —16, —19, —27, —28, —43,
—67, and—163; the corresponding-invariants are thus actual integers.
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As it happens, these thirteen spegiahvariants are all forced to be perfect cubes of integers.
Equally marvelously, the difference of two of these spegialvariants is very nearly a perfect
square [16, 23]. The corresponding triple of integers isdatoee a prime candidate for arbc
triple (at least, once the three integers are divided by teiatest common divisor). Gross and
Zagier [16] cite an example with = (—1 4 i1/163) /2, where the three integers

=1
1728
:ZKIZ::151931373ﬂ56ﬂ00::212-53~233-293
1728
353%%§%£12 = 151,931,373,056,001 = 3% - 7% - 112 - 19% . 127 - 163

form anabc triple with quality about .20362. Going through al(123) = 78 possible pairs of special
j-invariants, we find that the best resultiafy: triple comes from bothi(7y) — j(743) andj(r6) —
j(767), wherer(d) = 3(d + v/—d): the triple is(1, 512,000, 512,001) = (1,2'? .53 3% . 7% . 43)
and has quality about44331.

3. INFINITE FAMILIES OF abc TRIPLES

All of the numerical examples from Section 2, however irgére, cannot shed any light on
whether theube conjecture is true or false: the “only finitely many” or “tkeeexists a constant”
clauses in its various versions preclude us from drawinglocsons from any finite number of
examples. For that matter, any finite number of examplesatame out even more ambitious
possible versions of thec conjecture. For instance, could there be an absolute gunSta 0
such that < S-R(abc) always? This statement, similar to tie: conjecture but without the messy
epsilons, might be called the “simplistiéc conjecture”. Again, no finite amount of computation
can resolve this question.

What we need, to help us decide whether these statementsi@i@ false, are constructions of
infinite families ofabc triples. And it turns out that several such constructioristexany one of
these constructions shows that the simpligtic conjecture is false. In other words, the construc-
tions in this section demonstrate that the epsilons imtlaeconjecture are necessary if we hope
that the assertion is true.

3.1. The transfer method again. Recall from Section 2.4 that {fz, b, ¢) is anabc triple, then so
is (a2, ¢(b—a),b?). In particular, if(1,c — 1, ¢) is anabc triple, then so i1, ¢ — 2¢, (¢ — 1)?). Of
course, we can iterate this transfer multiple times in a fmwexample (1, (¢* — 2¢)? — 1, (¢* —
2c)?) = (1,¢* — 4% + 4% — 1,¢* — 4¢% + 4¢2) will also be anabe triple. As it happens, doing
this double transfer always allow us to remove an extra fauft@ from the radical. For example,
suppose that is odd. Then, by setting = 1 andb = ¢ — 1 in the third and last terms of the chain
of inequalities (5), we know that

(c—1) S c

R((c? = 2¢)(c— 1)92) ~ R((c—1)c)




But now (¢ — 1)? is even, so replacing, b, andc in the second and last terms of the chain of
inequalities (6) withl, ¢* — 2¢, and(c — 1)2, we find that
2 2 _1\2
(c* —2¢) > (c—1) >0 c . ®)
R(((¢® —2¢)? = 1)(c? — 2¢)?) R((c? = 2¢)(c — 1)?) R((c—1)c)

We can iterate this double transfer endlessly to createfamtensequence. Let us sgt= 9, cor-
responding to thebc triple (1,8,9), and for everyn > 0 definec,, 11 = ¢} — 4c2 +4c2. For exam-
ple,c; = 3,969, corresponding to the double transférs,9) — (1,63,64) — (1, 3,968, 3,969).
Equation (8) tells us that

Cn+1 > 9 Cn
R((cn+1 — 1)cn+1) - R((cn — 1)cn)
for everyn > 0. Sinceco/R((co — 1)co) = 2, this implies that
Cn
R((cp — 1)cy)

for everyn > 0. And since2"! - 3 exceeds any constant we might care to name in advance, we
have just created an infinite sequencelf triples (1, ¢, — 1, ¢,,) that repudiates the “simplistic
abc conjecture”!

We can convert the inequality (9) into a quantitative measafrhow much smaller than,
this radical is. Note that, < ¢! , for everyn > 1, and soc, < ¢§° = 9*". In particular,
log ¢, < 4™log9, and s®@™ > /log ¢, /+/1og9. It now follows from (9), wheru = 1,b = ¢, — 1,

andc = ¢, that
c - 2y/log9 ¢

2n-1.3 = 3  logc
To this point, it hasn't mattered which logarithm we've baesing, but now we clarify that we
are usinglog z to denote the natural logarithm (which is often writtenr), as is standard in
analytic number theory. With that admission out of the wag,remark that the constaﬁt/go—@ is
approximatelyd.988203.

This bound for the radical of these triples can be re-expkas an inequality about their quality:
the lower bound

> 1.3 9)

R(abe) < (10)

(0., ¢) log ¢ S log ¢
a,b,c) = >
¢ log R(abc) ~ logc — log v/log ¢ + log(2+/10g 9)
> lolgc >logc+%loglogc:1+loglogc (11)
logc — 5 loglogc log c 2logc

holds when(a,b,c) = (1,¢, — 1,¢,). Notice that these qualities are all greater thatut the
lower bound does tend tbasc becomes larger and larger. If the lower bound tended to aaoins
larger thanl, this sequence would disprove the actula conjecture (specifically Version 5) and
this whole paper would need to be rewritten!

3.2. Folklore examples. There are several known constructions of infinite sequenfoés: triples,

each of which provides a counterexample to the “simplighicconjecture”. We present a few of
these constructions in this section. Unlike the recursmestruction from the previous section,
these constructions have very simple closed forms whichenitaébvious that the smallest and

largest numbers in the triples have extremely small raslidal each case, a quick number theory
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lemma is required to show that the radical of the middle nunibsomewhat smaller than the
number itself. These constructions are simple enough ¢sethvell-versed in the field) that it is
nearly impossible to determine who first came up with therdeéd, some cannot even be found
explicitly in any publication despite that they are “welldwn Part of the motivation for this
paper was to ensure that these families@f triples are explicitly recorded in the literature; we
have included earlier citations whenever we could locateith

Lemma 1. If p is an odd prime, thep? divides2P(®—1 — 1.

Proof. Euler’s theorem [17, page 63] says thatindm are relatively prime positive integers,
thena®™ = 1 (modm), wheres(m) is the Euler phi-function. Applied with = 2 andm = p?,
for which ¢(m) = p(p — 1), Euler’s theorem yieldg?*~1) = 1 (modp?), which is exactly the
conclusion of the lemma. [

The following construction was recorded by Granville andKer [15].

Example 1. For any odd prime, set(a,b,c) = (1,2°P?=1) — 1,2°(=1), We know by Lemma 1
thatp? dividesb, and soR(b) < b/p. It follows that

2c
< —.

R(abc) = R(a)R(b)R(c) <1---2

b
p p
Since the sequence of primgdecomes larger than any constant we want, this family ofeip
does contradict the “simplistiehc conjecture”.

For easier comparison to other examples, we can rewriteghemand side in a form involving

only ¢. Sincec < 27°, we haveog ¢ < p*log2 and sop > \/7\/:253 Combining this with (12) yields

(12)

c
R(abc) < 24/log 2——.
(abe) og Touc

This upper bound for the radical has the same shape as thel lmo@guation (10) for our first
example, but with the slightly worse constantlog 2 ~ 1.66511.

Our next infinite family involves a lemma providing divisiity by high powers of a prime,
rather than just its square.

Lemma 2. If n is a nonnegative integer, théfi*! divides8™ — 1.

Proof. We proceed by induction; the base case- 0 is immediate. Assuming the lemma is true
for a particulam, we write

87n+1 - 1 _ 877” N 1 _ (87” N 1)(86.7’” + 85,7n + . + 87n + 1)

On the right-hand side, the first factor is divisible iy by the induction hypothesis, while the
second factor is divisible by since each of its seven terms is congruent {mod7). Therefore
77+ . 7 divides the left-hand side, which is the statement of then@nforn + 1 as required. W

Example 2. For any nonnegative integer, set(a,b,c) = (1,8 — 1,8™). Equipped with
Lemma 2, we deduce that(b) < b/7" and thus
2c

b
R(abc) = R(a)R(D)R(c) <1+ -2 < .
1 7 7



Again we have disproved the “simplistidc conjecture”, and again we can write the right-hand
side as an expressiondralone, sincéog c = 7" log 8:
R(abc) < 2log 8
log ¢
Note that we have improved the order of magnitude of the uppeand on the radical, from the
previous examples’//log ¢ to ¢/ log c.

Variants of this construction abound. It is equally easyravp by induction tha2"*2 divides
32" — 1 foranyn > 1, and so a similar construction (attributed in [21, pages44{+o Jastrze-
bowski and Spielman) with the triple, b, ¢) = (1,3 — 1, 32") results in the upper bound

3¢ 3log3 ¢
ontl 2 ogc

Here the leading constaﬁi‘;g—?’ ~ 1.64792 is even better thaRlog 8 ~ 4.15888.

Various constructions of this type are easily found by reipig8™ or 3*" with a sequence of the
form ¢", wherep > 2 is an integer dividings — 1. Whenp is a prime and, is a prime power, this
construction was given by Stewart [36, Theorem 1, (3)]. Altheese constructions show that the
radical is less than some constant (depending on the pagestadtosen) times/ log c. Moreover,
the same sort of argument that led to equation (11) showsiteaualities of thebc triples arising
from Example 2 are essentially as largeqés, b,c) > 1 + % without the factor o® in the
denominator. (The same bound will hold for the rest of thexgxas in Section 3.)

R(abc) <

Our last example differs from the previous ones: the radi€fhe middle number of the triple
is small because high powers of several primes divide itjusata high power of a single prime.

Lemma 3. For any positive integer, definel. = lem[1,2,...n] andt = Llog"J and letP =
[I5<,<, p be the product of all the odd primes uprtoThenPL/2t divides2” — 1. In particular,
t(oL _
R(2¥ —1) < w

Proof. Given an odd prime < n, letr = H‘;ﬁ;}j, so thatp” is the largest power gf not exceed-
ing n. Clearly bothp™ andp — 1, being at most in size, divideL; since they are relatively prime,
their productp™(p — 1) also dividesL. As 2 is relatively prime top"**, Euler’s theorem tells us
that2¢®™™) = 2¢"(>-1) = 1 (modp"*'), and therefor@” = 1 (modp+!) sinceL is a multiple of

P (p—1). Thereforq?’”rl divides2” — 1 for every odd prime < n. All of these prime powers

are relatively prime to one another, and hence their product

[Iv=TrIv-rz

3<p<n 3<p<n 3<p<n

also divide2” — 1, as claimed. In this last equality, we used the fact thaf1, 2, ...n] is com-
posed exactly from the highest power of each distinct prisstol found amongst the factorizations

logn log n

of the numbers 1 through. In other wordsl, = 24ies2/ [T, _ pliesr) = 2T, _ p"

Note also that every prime dividing/2* is an odd prlme not exceeding hence dividesd’ as
well. The above argument shows thadivides the quotient2” — 1)/(L/2"), and so the primes
dividing L/2! are already represented in this quotient; consequentyratical of2” — 1 is no
larger than(2L — 1) /(L/2%). [ |
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Example 3. For any positive integer, definel. = lem(1,2,...n], and set(a,b,c) = (1,21 —
1,25). Using the notatiort = H‘;igj andP = [],.,,p from Lemma 3, we have’ < n and
log ¢ = Llog 2 and thus

2t(2F — 1)
L logc’

It is a bit harder than in the previous examples to write tigatrhand side solely in terms of

since the relationship betweenandc is more complicated. The Chebyshev functiofm) =

loglem[l, ..., n] (often written in terms of the “von Mangoldt functioi(n)) satisfies)(n) ~ n

by the famous prime number theorem [3, pages 74-75]. Therkiglog c = log L + loglog 2 =

(n) + loglog 2 ~ n, and hence we have the asymptotic inequality

nc

R(abc) < 1- -2 < 2log?2

cloglogc

loge '’
which has a slightly worse order of magnitude than the lastdwamples. For what it's worth, we
can remove a factor &f from the right-hand side by restrictingto be just less than a power &f

R(abc) < 2log?2

3.3. A curious divisibility. All of the abc triples constructed in this section so far share the prop-
erty that their smallest number equalsHowever, we have a final construction to describe, one
that was discovered only recently [6], which has the feathed all three numbers in the con-
structedubc triples are nearly the same size. This construction rehese following quite strange
divisibility relationship.

Lemma 4. For any positive integen satisfyingn = 2 (modo6),

n>—n-+1
3

Settingn = 6k + 2 for a nonnegative integérreveals that the lemma is equivalent to the curious
statement:

2
) divides n" — (n—1)"""

(12k* + 6k +1)* divides (6k + 2)%*T2 — (6k 4 1)0+ 1, (13)

Proof. Given a nonnegative integér setQ = 12k* + 6k + 1. To establsh the divisibility (13),
we need to show thdbk + 2)5%2 = (6k + 1)%**! (mod Q?). Our main tool will be the following
observation: itz = bQ + 1 (modQ?), thena’ = jbQ + 1 (modQ?) for any positive integej. This
observation follows from the binomial expansion
i j
@ =(1+0Q) => (i)(bQ) =1+ bQ+§0(mon ).

=0
Since(6k + 1) = 18kQ + 1 and—(6k + 2)® = —(18k + 9)@ + 1, we can certainly say that
(6k + 1) = 18kQ + 1 (mod Q?)
—(6k +2)* = —(18k + 9)Q + 1 (mod Q?).
Raising both congruences to thkth power using our observation, we see that
(6k 4+ 1)% = 2k - 18kQ +1 = (3Q — (18k 4+ 3))Q + 1 = —(18k + 3)Q + 1 (Mod Q?)

(6k +2)% = —2k(18k +9)Q + 1 = (—3Q + 3)Q + 1 = 3Q + 1 (mod Q?).
13



We now calculate that
(6k + 2)5%2 — (6k + 1)5 = (3Q + 1)(6k + 2)® — (—(18k +3)Q + 1)(6k + 1)
=BQ+1)(3Q+6k+1)+(9Q — 18k —6)Q — (6k + 1)
= 18Q* = 0 (mod Q?),
which is what we needed to show. [ |

Remark. Although Lemma 4 has the elementary (if unilluminating)gfrjust given, there is in
fact a deeper explanation [6, Proposition 4.3] behind thtisresting divisibility. It is related to the
trinomial 2™ + x + 1, which is reducible whem = 2 (mod6), and the relationship between its
discriminantn™ — (n — 1)"~! and the resultant of its irreducible factors.

All this work allows us to establish a bound for the radicab of the infinite family ofabc triples
we will now construct.
Example 4. For any odd integet > 7, setn = 2% and

(a,b,c) = ((n — )"t " — (n— 1)"_1,71").
Sincen is congruent t@ (mod6), Lemma 4 tells us tha(t%)2 dividesb. Therefore
b 6b  6¢
2 — < —. 14

(n?—n+1)/3 “7 T (14)
Seeking a lower bound om, we writelog ¢ = nlogn andloglogc = logn + loglogn < glogn
whenn > 100, hencen = log ¢/ logn > log ¢/(2 loglog ¢) and so

R(abc) = R(a)R(b)R(c) < (n—1)-

60 6c _ 8cloglogc

R(abc) < — < =
(abe) n  loge/(2loglogc) log ¢

whenk > 7.

As stated so far, this construction yields a bound on thecahdiomparable to the bound from
Example 3, but with a worse constant (although for latgéhe 8 can essentially be replaced by
a6). However, if we choose specific values foin the previous example in a manner suggested
by Carl Pomerance, we can further decrease the radicalg abtinespondingbc triples to be on
par with the bound from Example 2.

Example 5. For any positive integef, setk = 3 - 27 in the triple of Example 4, so that = 87.
Using Lemma 2, we see that™! dividesn —1 and thusR(a) = R(n—1) < (n—1)/7/. Therefore
for the abc triples

(a,b,c) = ((87j — 1)87 _1’87j87j _ (87j _ 1)87 _1,87j87j)
we may improve the bound (14) to
Rlabe) = B(@)R()R(e) < " ’ <8 6 ieg S
abc) = R(a =" (n2—n+1)/3 Tin O Tin g logc’

We end this section with a question: we have seen severakatany constructions of infinite
families ofabc triples, all of which yield an upper bound d#(abc) somewhere betweet(/log ¢
andc/ log cin magnitude. Is there an elementary construction of a sespefabc triples satisfying
R(abe) < ¢/(logc)* for some) > 1, or equivalently, satisfying(a, b, c¢) = 1 + Xloglog ¢/ log c?
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(We will see in Section 5.1 that such sequences exist, byiribef does not supply a formula for
them, merely a proof of their existence.)

4. BACKGROUND, MOTIVATION, AND SUPPORT FOR THEzbc CONJECTURE

Theabce conjecture was proposed in 1985 by Masser and Oesterl&12,Avho were motivated
by two analogous problems concerning polynomial rings dinatie curves. In addition, after the
abc conjecture’s appearance, number theorists found a prisdiabheuristic that also supports its
statement. In this section we describe these links betwesabt conjecture and other branches
of mathematics.

4.1. The Mason-Stothers theorem.Despite their very different appearances, the integeaad
the ring of polynomials with complex coefficien§z| have a lot in common. In both settings,
all nonzero elements enjoy unique factorization into in@tle elements: every integer can be
written uniquely as a product of primes (and possibly), while every polynomial can be written
uniquely as a product of monic linear factars- p (and possibly a nonzero leading coefficient
in C). Indeed, each ring is a principal ideal domain (PID), whigkeven stronger than being a
unique factorization domain (UFD). In particular, one cafirtke the radicaRZ(a) of a polynomial
a(x) € Clz] to simply be the product of all distinct monic linear factthgt divide it, in perfect
analogy with the radical of an integer. Similarly, one cafirdethe greatest common divisor
of two polynomials and hence decide whether two polynomaadsrelatively prime. (For these
definitions, we ignore the leading coefficients, which areitsl' in C[z], just as we might take
absolute values of integers to ignore their sign for the pseg of examining their factors.) It
follows that the degree of the radical of a polynomialijx] is the same as the number of distinct
complex roots of the polynomial.

The integers generate the rational numld@ravhich are quotients of one integer by a second
nonzero integer; the polynomials generate the aptly naragdnal functionsC(x), which are
guotients of one polynomial by a second polynomial that isidentically zero. The rational
numbers form the simplest example ohamber field(we will say more about number fields in
Section 5.3), while the field of rational functions owérform afunction field and it is a robust
phenomenon in number theory (see for example [28, Chapt8edtion 14]) that most results
in number fields have analogous formulations in functiordfiel We have seen that irreducible
polynomials correspond to prime numbers; another entryaridictionary” between the two rings
is that the degree of a polynomial corresponds to the |dgardf a positive integer.

Masser’s description of théc conjecture was motivated by the following theorem in thentfu
tion field case”, independently discovered by Stothers aaddvi [40, 26] in the 1980s:

Theorem (Mason—Stothers)Let a(z), b(z), c(z) € C|z] be relatively prime polynomials satisfy-
inga(x) + b(x) = c¢(x). Then

max { deg(a), deg(b), deg(c)} < deg(R(abc)) — 1.

As it happens, the proof of the Mason—Stothers theorem isalligtquite elementary. Some
versions of the proof (see for example [22, Chapter IV, ®asti3 and 9]) rely on one important
feature of polynomials that is completely absent from thiegers: the ability to take derivatives.
For example, it is not hard to show that a polynomial is squeeg(that is, has no repeated factors
in its factorization into linear polynomials) if and only iif is relatively prime to its derivative.

Number theorists would love to be able to detect squareifitegérs so easily!
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What would happen if, in the Mason—Stothers theorem, weskased from the function field
setting to the number field setting by replacing degree watfatithm everywhere? We would
obtain the statementax { log(a),log(b), log(c) } +1 < log(R(abc)), which, after exponentiating,
becomes: max{a,b,c} < R(abc), or simply R(abc) > ec if we order the three positive integers
sothata 4+ b = c. This is an instance of the “simplistidc conjecture” we disproved thoroughly in
Section 3. So the analogy between function fields and numdddsfiwhile fruitful, should always
be taken with an epsilon grain of salt.

4.2. The Szpiro conjecture. In addition to the analogy with triples of polynomials, Garé’s
motivation for formulating thexbc conjecture had an additional source: the subject of allipti
curves. We need to give a quick crash course in invariantdlipfie curves before stating the
Szpiro conjecture, in which Oesterlé was interested; @al ¢ to say just enough to convey a
decent idea of what the “minimal discriminant” and “conduttof an elliptic curve are. The
reader can, if desired, skip the next four paragraphs angd gtraight to the punch line.

A general cubic plane curve is given by the equatjdn- a,zy + asy = 2 + asx? + asx + ag,
and sometimes by other forms, such as equation (7); but wdaeils on cubic curves in “short
Weierstrass form”

y? = 23 + aux + ag. (15)
It is always possible to find a change of variables to writel@icplane curve in short Weierstrass
form. (For example, a change of variables transforms thatamu (7) into the formy? = 23 —
432d%.) In this situation, thaliscriminantof the curve is the quantith = —16(4a3 + 2742). If
A = 0, then the cubic curve has a singularity, which is typicallyagle (where the graph of the
curve crosses itself) but is a cuspiif = ag = 0, when the equation is simply = 23. But as long
asA # 0, the cubic curve has no singularities and is calle@léiptic curve

Whena, andag are rational numbers, a change of variables can be unigheken so that the
coefficientsa, andag become integers with, not divisible by the fourth power of any prime;
the resulting equation is minimal modeland its discriminant theninimal discriminantfor the
elliptic curve. This minimal discriminam is equal to the original discriminant times the twelfth
power of a rational number, chosen so that the resultingymtad an integer not divisible by the
twelfth power of any prime.

Once we have a minimal model for an elliptic curve over theoratl numbers, we careduce
the elliptic curve modulo any primg: we simply consider the constants and variables in the
equationy? = z* + ayr + ag to be elements o¥/pZ, the finite field withp elements. The
minimal discriminantA over this finite field is simply the residue class of the inteyanodulop;
in particular, the reduction-at-of the elliptic curve is nonsingular (hence still an ellgptiurve)
precisely wherp does not divide\ (we say that the curve ha®od reductiorat p). Whenevep
dividesA, we say that the elliptic curve hasd reductiorat p. While it makes no geometric sense
to talk about nodes or cusps of the “graph” of the ellipticveumodulop—there are just a finite
number of possible points, not a whole continuum—we cahcgttegorize possible singularities
algebraically, as above, into two types of bad reductior:réduction-ap has a node (which we
call multiplicative reductioh whenp divides A but notasag, While it has a cusp (which we call
additive reductiopwhenp divides all ofA, a4, andag. (We are intentionally neglecting the more
complicated cases when= 2 andp = 3.)

Finally, the conductor N of an elliptic curve is a number whose prime factors are pedgi
those modulo which the elliptic curve has bad reduction. é&/kpecifically,N = prfp, where

the product is over all primgs and f, equals) if the elliptic curve has good reductionztl if it
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has multiplicative reduction, artlif it has additive reduction. Since the primes of bad redurcti
are precisely the primes dividing the nonzero integerall but finitely many of thef, equalo,
and soN is a well-defined positive integer. Indeel, is a multiple of R(A), the radical of the
discriminant, and also a divisor @t(A)2. An elliptic curve with no primes of additive reduction
is calledsemistablewe see that semistability is equivalent’o= R(A). (The breakthrough by
which Andrew Wiles proved Fermat's last theorem was showhagevery semistable elliptic curve
was associated, throughfunctions, to a modular form in a manner specified by the i{lama—
Shimura conjecture”, which is now the “Modularity theorejn”

The punch lineIn the early 1980s, L. Szpiro formulated the following cecture relating the
minimal discriminant of an elliptic curve to its conductor.

Szpiro Conjecture. For everys > 0, there exists a positive constasitz) such that for any elliptic
curve E defined by an equation with rational coefficients,

|A| < S(e)NO*,
whereA is the minimal discriminant of and NV is the conductor of.

Oesterlé observed that the newly formulatéd conjecture is stronger than Szpiro’s conjecture:
one can deduce Szpiro’s conjecture from tle conjecture, but knowing Szpiro’s conjecture for
all e > 0, one can deduce théc conjecture only when the in Version 4 is greater thagn (see
[34, Chapter VIII, exercise 8.20] and [45, Chapter 5, Appr#ABC]).

In fact, Oesterlé demonstrated [31, pages 169-170] tkatthconjecture is actually equivalent
to the following modification of the Szpiro conjecture:

Modified Szpiro Conjecture. For everys > 0, there exists a positive constasft =) such that for
any elliptic curveE whose minimal model ig? = 2® + a4z + a,

max{|as|*, ag} < S’ ()N,
whereN is the conductor of.

SinceA = —16(4a3 + 27a2), the modified Szpiro conjecture is clearly stronger tharottiginal;
indeed, one can takg&(c) = 16(4 + 27).5’(¢) and prove the original conjecture from the modified
one. But it is possible, in theory, fax to be small only because of extreme cancellation when the
hypothetically enormous numbets? and27qZ are added together (note thatcan be negative).
The modified Szpiro conjecture is usually stated in termsvof particular invariants, andcg
of an elliptic curve, rather than the coefficientsandag we have used from the short Weierstrass
form (15); these invariants and the condudibcan be associated with any elliptic curve, no matter
what equation originally defines it. The invarianfsandcg are special in the sense that they suffice
to determine any elliptic curv& up to isomorphism (indeedy can be defined by the equation
y? = 13 —27c4x—54cg). There are algorithms for computing these invariants franious defining
equations. For example (see [9, Section 3.2]), an algorghbaska—Kraus—Connell takes and
cg, computed from any model df, and outputs the minimal model &f; while Tate’s algorithm
computes, among other things, the conductak of

4.3. Heuristic based on a probabilistic model. While relating thezbc conjecture to other mathe-

matical statements is valuable, we might be comforted binigevmore instrinsic reason to believe
in its truth. One way that analytic number theorists honé theliefs about how the integers work
is by creating a random-variable situation that seems toeitbé integer phenomenon. By rigor-

ously showing that something happens with probability the random model, we can gain some
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confidence that the analogous statement really is true imtbgers. The “Cramér model” of the
distribution of primes (see for example [35]) is probablg timost well-known example of this
paradigm.

Here we give a probabilistic argument, adapted from Tag fdijvhy one should expect théc
conjecture to hold. Broadly speaking, the argument astetsf the radicals of three integers are
too small, then the “probability” that two of the integersysto the third is vanishingly small; this
is assuming that these numbers with small radicals arerilaised randomly”. More specifically,
we will argue that the following equivalent version of tifle: conjecture should be true:

abc Conjecture, Version 6. Supposey, 3, v are positive real numbers satisfyingt- 5 + v < 1.
When) is sufficiently large (in terms af, 3, ), there are no solutions to the equation+ b = ¢
with ¢ > M, wherea, b, ¢ are relatively prime positive integers satisfyiftja) < M“, R(b) <
MP R(c) < M.

We see rather easily that Version 1 of thte conjecture implies this new version: givén and
a, B,y with a + 5 + v < 1, we must have

R(abc) = R(a)R(D)R(c) < MOMP M"Y = MOTFTY < o8+

for any triple satisfying the hypotheses of Version 6. Buieysion 1 withe = 1—(a+/5+7) > 0,
there can be only finitely many such triples b, c¢); simply choose\/ larger than the largestthat
occurs in any of them.

It is a little more difficult to see that Version 6 of théc conjecture implies Version 1: on
the face of it, the loophole phrase “sufficiently large (imte of o, 3, v)” might allow an infinite
sequence of counterexamples to Version 1 correspondingégaence of distinct triples, 3, .
However, if there were in fact an infinite sequence of cowxamples to Version 1 for some
fixede, then the corresponding sequence of “vector qualities’, 7) = (ke ek Tar)
would all lie in a compact region dR?® (namely the simplex in the positive orthant defined by
r+y+ 2z < 1-—¢), and hence some subsequence of them would converge to apied
(v, Bo, o) satisfyingag + By + 70 < 1 — €. Consequently, Version 6 of théc conjecture could
be applied to the slightly larger poittt, 5,7) = ((1 + €)ao, (1 + €)So, (1 + )70) to derive a
contradiction.

Now let’s use a probabilistic model to probe Version 6 its@le will need the following lemma,
standard in analytic number theory (see [41]), saying thatiumbers with a given radical are
quite sparse:

Proposition. For everyes > 0, there exists a constafit(s) such that for every positive squarefree
integerr and everyM > 0, there are at mosf’(¢) M¢ integers less thaM whose radical
equalsr.

(This upper bound for the number of such integers will featagain, in a more precise form,
in a lower bound given in Section 5.1.) Using this lemma we estimate, given, 3, , the
number of triples of integers:, b, ) there are withl < a,b < 2M, M < ¢ < 2M andR(a) <
M, R(b) < M” R(c) < M". (Note that for the moment we are not paying attention to héret
two of these numbers sum to the third number.) There are at des M/° - M” possibilities for
the three radicals, even if we forget that they have to bersfje® and relatively prime. Choosing
e =1(1—(a+ 3 +7)) > 0, the above proposition tells us that there &fe) M/* possibilities for

a for any givenR(a), and similarly forb andc. Therefore the number of such triples is at most

M- MP - MY - (T(e)M?)” = T(e)>M+FH7%3 = T(e)* M=
18



Now, instead of looking at the specific collection of triptésscribed in the previous paragraph,
let us suppose thate choose the same number of triples completely at rarfdam the set of
triples (a, b, c¢) with 1 < a,b < 2M, M < ¢ < 2M; what is the probability that at least one of the
chosen triples satisfies+ b = ¢? The probability of a single chosen triple satisfying- b = ¢
is at mostl/M, since there is at most one correct choice oudofor ¢, no matter what andb
are. Therefore the probability that we obtain such a chosgle is at mostr'(¢)M!—< - M~ =
T()®M—<. Because we have no reason to think that the actual triplewrited in the previous
paragraph are any more or less likely to satisfy b = ¢ than randomly chosen triples, we are
persuaded of the following heuristic: the “probability” a mostT'(¢)3M —¢ that there exists a
triple (a, b, c) with 1 < a,b < 2M, M < ¢ < 2M that successfully satisfies the conditions in the
second sentence of Version 6 of tie conjecture.

Every triple witha + b = c satisfiesl < a,b < 21, 2% < ¢ < 28*! for a unique positive integer
k. Let the “kth event” be the assertion that there exists a succesgfld far M/ = 2* as described
above. The “probability” of théith event, by the above heuristic, is at mdgt)3(2%)~¢. Notice
that the series

SECICIRS T

converges to a finite number. Therefore, by the Borel-Clamdehma [19, pages 51-52], with
probability 1 only finitely many of the events occur. We conclude that regigally, only finitely
many triples should successfully satisfy the conditionthansecond sentence of Version 6 of the
abc conjecture; so if we choos® large enough, we believe that there will be no counterexampl
remaining.

In Section 5.2, we discuss a refinement of this heuristic ématbled the authors of [33] to
propose a stronger, even more precise version ofiheonjecture.

It is tempting to think of the:bc conjecture as a vast conspiracy that arranges the numbtérs wi
small radicals so precisely that no two of them ever add tard.tfhis temptation is even stronger
when we see examples like the infinite families from Sectiow&forced the smallest and largest
numbers to have tiny radicals, but th&: conjecture seems, like some mystical force, to keep the
middle number from being divisible by too large a perfectaagu However, the above heuristic
(with, say,a = v = ¢ andg = 1 — 3¢) offers an explanation: these families do not contain all
that many triples, and probability simply dictates thasibverwhelmingly unlikely for any of the
middle numbers in such a sparse set to have a small radical.

We conclude this section by remarking that the same heusigtigests, whem+ 5+~ > 1, that
there do exist infinitely many triple@, b, ¢) with a + b = ¢ ande > M that satisfyR(a) < M<,
R(b) < MP, andR(c) < M". In other words, it is not just the numerical qualita, b, c) =
loglf%g(;bc) that flirts with the boundary(a, b, ¢) = 1: the “vector quality”(lolgog(ca), lolgolg%fb), blgogfc))
actually flirts with the triangular boundaf§y = {z,y,2 > 0: z +y + z = 1} in R? at every
single point. This observation leads to another questian:ane find a construction of an infinite
sequence ofbc triples such that their “vector qualities” approach, in lineit, a point of 7" other
than(0, 1, 0) or one of the other two corners?

5. GENERALIZATIONS, REFINEMENTS AND THE STATE OF THE ART

In this last section, we explore our most state-of-the-aotedge about thebc conjecture. We

describe some (less elementary) constructionsofriples with much better quality than the ones
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we have seen so far; we present several refinements of thectorg, which attempt to decide
where in the space between the “simplistic” and acthalconjectures the exact boundary lies; we
generalize thebc conjecture to other settings and to more variables; andyfimad discuss how
close we are to actually proving the inequalities thatdteconjecture asserts.

5.1. Best known abc triples. We already saw in Section 3 that having examples of familfes o
abc triples helps us probe how sharp (indeed, how trueytheonjecture is. Presumably, thinking
more deeply about how to find goadc triples would yield even smaller radicals than the ones we
have seen thus far. Stewart and Tijdeman [37, Theorem 2]xdicdtky this in 1986: they came up
with a construction of infinitely manybc triples of higher quality than those in Section 3.

They proved that for any > 0, there exist infinitely many triplegz, b, ¢) of relatively prime
positive integers witlu + b = ¢ that satisfy

log R(abc) ) . (16)

¢ > R(abe) exp (<4 ™ Dloglog R(abe)

All of these exps and logs can be a bit daunting for those red ts this game. With a little cun-
ning, one may show that for arfy > 1, every sufficiently largebc triple satisfying the bound (16)
also satisfiesz(abc) < c¢/(logc)?. In fact, (16) is equivalent to a lower bound for the qualify o
the form
4—4

Viogc -logloge
Both of these observations show that the&etriples are far better than the ones in Section 3. Cer-
tainly they amply refute the “simplistighc conjecture” and show that the epsilons in the statement
of the realabc conjecture must be present. But again, the lower bound éoqgtiality tends td as
c grows large, and so even this better construction does sptalie the actual conjecture.

Stewart and Tijdeman’s construction is quite illuminatifgrst, given a positive integerand
a parameterX that is far larger tham, they consider the set of integers upXowhose factor-
izations contain only the first odd primespy, ..., p,; such integers are calleg™friable” (or
“p"-smooth”). They obtain good estimates for the number of snigyers by noting that the num-
ber of solutions t@;" - - - pi~ < X is the same as the number of lattice poifits, . .., n,) in the
r-dimensional simplex (high-dimensional pyramid)

q(a,b,c) > 1+ (17)

{xl,...,xr >0:x1logpy + -+ x,.logp, §logX}.

When X is large, this number of lattice points is essentially thdimensional volume of the
simplex, which is easy to calculate. Their resulting loweuibd for the number op”-friable
integers up taX is a more precise version of the Proposition from Section 4.3

Then, they point out that two of thegé-friable integers must be congruent to each other modulo
a high power oB; indeed, if the number of such integers exceZgshen the pigeonhole principle
forces two of them to lie in the same residue class modtlgAnd if those two happen to have
common factors, their quotients by their greatest commuisali will also be congruent to each
other.) These two integers and their difference form adrgaitisfying: + b = ¢; the product of the
radicals of the first two integers is at mgst- - - p,; and the radical of their difference is at most
X /2Rt

Of course, it is necessary to write down explicitly the nelaships among all of these functions
and parameters; analytic number theorists learn toolsatiegprecisely suited for converting from

the above sketch to a full quantitative proof. When the desles, the inequality (16) is the payoff.
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Later, van Frankenhuysen [44] added an improvement to therant of Stewart and Tijdeman:
instead of using the full lattice of integer poirts;, . .., n,), he chose a sublattice sitting askew
inside the full integer lattice in such a way that the poimtshe sublattice were relatively more
tightly packed together, in the same way that a pyramidalkstd oranges in the grocery store
takes up less space than they would if we insisted on pla@noly ene directly atop the one below
it. In this way, and using high-dimensional sphere-packiongnds already in the literature, he
showed that one could improve the constant d in the above inequalities ®068.

At the end of Section 4, we described the vector quality aftartriple; we remark here that even
these fancybc triples of Stewart/TijJdeman and van Frankenhuysen havetbperty that their
vector qualities converge 10, 1, 0) or one of the other two corners, rather than some intermediat
point (o, 5,v) with a + 8 + v = 1 andafy > 0. In other words, we still don’t know how
to construct an infinite family ofibc triples where each of the three integers has a radical that is
significantly smaller than itself.

5.2. Refinements of theabc conjecture. In a sense, the loophole phrases “only finitely many”
and “there exists a positive constant” make it hard to altuddtermine from data whether the
abc conjecture is acting like the truth. In 1996, Baker [4] refirtee conjecture to provide some
insight into how the constant’(¢) in Version 4 of theaubc conjecture should depend an Let
the functionw(n) denote the number of distinct primes (that is, ignoring tiépes) dividing n.
Baker proposed the following refinement: there exists aolabe constanfs; such that, ifa, b, ¢
are relatively prime positive integers satisfyimg- b = ¢, then

¢ < g Kimin{e(@)w(ee) w0} R(ghe)+e

for anye > 0. (The minimum in the exponent is there to help us: we can kd@phever two of
the three numbers have the fewest prime factors between)tidtihough this bound has an extra
dependence oa, b, ¢, this dependence turns out to be smaller tinbc), and so we have not
significantly altered the shape of the conjecture. It is tha there is still an unknown absolute
constantiK’; > 0 in this formulation; but at least now this constant is indegent ofe, which is
often quite important when making deductions.

Baker did demonstrate that there exist infinitely mabwytriples satisfying the related inequality

c> Kzgl—min{w(ab),w(ac),w(bc)}R<abc>1+e

for some absolute constait, > 0. In fact, his proof relies upon estimates for “linear forms i
logarithms”, a profound technical tool in Diophantine appmation for which Baker was awarded
the Fields Medal in 1970. He also mentions that Granvillgectnred that there exists an absolute
constantk > 0 such that: < K3 R(abc) for all abe triples, where(n) counts the number of
prime factors of. with multiplicity (so for examplew(72) = 2 but2(72) = 5). Notice that there

is no exponent + ¢ on the right-hand side of this conjecture! But of course thekshas to go
somewheref)(abc) can be far larger than(abc).

Most recently, another refinement has been put forward byRoBtewart, and Tenenbaum [33],
following up on a heuristic proposed by van FrankenhuysdrsrPhD thesis. In Section 4.3 we
described the heuristic assumption that statisticéily,) is distributed independently fromR(a)
andR(b) whena, b, c are relatively prime and + b = ¢; we then estimated how many integers up
to M have radicals bounded by ® and so on. Through an extremely careful study of the func-
tion that counts how many integers up/tb have their radical bounded by a second paraméter

Robert, Stewart, and Tenenbaum proposed the followingpgaro€onjecture: First, there exists a
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real numberi, such that allbc triples satisfy

3log R(abc) (1 logloglog R(abc) K,y ) ) . (18)

¢ < R(abc) exp <4

loglog R(abc) 2loglog R(abc)  loglog R(abc)
second, there exists a real numlb&ysuch that infinitely manyibc triples satisfy
3log R(abc) log log log R(abc) Ky
b Y| —————————=|1 19
¢ > Rfabe) exp ( log log R(abc) ( 2loglog R(abc)  loglog R(abc) (19)

(To tell the truth, they included more detailed versionshi$ refinement with even more logs in
the picture!) Note that the right-hand side of their secomagj@cture (19) is a little bit larger than
the lower bound (16) coming from the construction of Stewaar Tijdeman, since we are dividing
only by /loglog R(abc) in the main term inside the exponential insteadw@flog R(abc). It is
actually easier than it might seem to show that their firsjexnre (18) really does imply Version 2
of theabc conjecture.

Interestingly, a special quantity arises from these cdnjes of Robert, Stewart, and Tenen-
baum. Define the “merit” of anbc triple to be

m(a,b,c) = (q(a,b,c) — 1)2 log R(abc) loglog R(abe).

Every infinite family of abc triples ever established has the property that their menits to0
(it is not hard to verify this for the Stewart—Tijdeman exdesp for instance, assuming that the
right-hand side of the inequality (17) is in fact the corrgige of the quality). If the:bc conjecture
were false, it is an easy deduction from Version 5 that thatmeuld be unbounded above. But
it would actually follow from the conjectures (18) and (18at the lim sup of all merits of all
abe triples equalst8 exactly! So the merit is somehow an incredibly fine-scale susament of
anabc triple, one that looks at the boundary between possible mpod$sible through a powerful
microscope.

For the record, the largest merit found to date is approxayiat.67, which comes from thebc
triple (2543 - 182587 - 2802983 - 85813163, 2% - 37" - 11 - 173,5% - 245983) discovered by Ralf
Bonse in 2011. de Smit’s web site [10] lists th&l knownabc triples with merit greater tha?y.

5.3. Other alterations of the conjecture. In addition to these results, some interesting general-
izations and refinements of tléc conjecture have appeared in various contexts.

Congruenceibc conjecture. First we state yet another version of the conjecture, whooks like
it concerns only a small subset @bc triples but is actually equivalent to the other versions we
have seen so far.

abc Conjecture, Version 7. For every positive integelV and every > 0, there exists a positive
constantE (N, ) such that all triples(a, b, ¢) of relatively prime positive integers with+ b = ¢
and N | abc satisfy

c < E(N,e)R(abe)' .

The special cas& = 1 is of course the familiatbc conjecture (specifically, Version 4). Moti-
vated by Oesterlé’s observation [31] that the special ¢dase 16 of this new version implies the
full abc conjecture, Ellenberg [13] demonstrated that in fiictan be replaced by any integ#,

thus showing that Version 7 of théc conjecture really is equivalent to the others.
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Uniform abe conjecture for number fieldsAn important focus in algebraic number theory is the
study ofnumber fieldswhich are finite field extensions of the fieof rational numbers. Equiv-
alently, a number field is a field of the for@d(«), where« is a root of a polynomial with integer
coefficients (aralgebraic number For examplep = i + /2 is an algebraic number since it is
a root of the polynomiak* — 222 + 9; consequentlyQ(a) is a number field, consisting of all
complex numbers of the form+ sa + ta? + ua? for rational numbers, s, ¢, u. Arithmetic can be
done in a consistent way in number fields, almost as nicely #seirational numbers themselves,
and their study is essential to our understanding of solstal polynomial equations.

\ojta [45, page 84] formulated a generalization of tthe conjecture to number fields, pointing
out many notable consequences of this generalization (se¢5 12, 14]). However, that formu-
lation contains some unfamiliar terminology that would be kborious to define here. The next
paragraph, therefore, is intended for those who are mordidauwith algebraic number theory;
other readers may skip that paragraph and at least get aessipnistic idea of the statement of
the uniformabc conjecture.

Let K/Q be a number field of degreewith discriminantDy. For each prime ideal of K,
let | |, be the correspondingradic absolute value, normalized so that, = Normg o (p) /"
for each real or complex embeddingf K, let|a|, = |7(a)|'/" be the corresponding normalized
Archimedean absolute value, whergis the modulus of a complex number. Let the height of the
m-tuple(aq, ..., a,,) € K™ be given by

H(ay,...,ap) = Hmax{|a1|v, e |am|v},
v

where the product goes over all placefprime ideals and embeddings). Finally, let the conductor
of them-tuple be given by

N(aq, .oy apy) = H |p|p‘17

pel

where! is the set of prime ideals such thaia, |y, . . ., |a,,|, are not all equal. Then we have:

Uniform abc Conjecture. For everye > 0, there exists a constanf(¢) > 0 with the following
property: for every number fiel#d” of degreen overQ, and every triplga, b, ¢) of elements of
satisfyinga + b + ¢ = 0,

H(a,b,¢) < U(e)(Dy"N(a,b,¢)) ™.

To shed some light on the relationship between this numblet Yiersion and the usuaidbc
conjecture, we remark that K = Q, thenn = 1 and Dx = 1; furthermore, if(a,b,c) is a
relatively prime triple of integers, then the heighta, b, c) is simply max{|al, |0|, |c|} and the
conductorN (a, b, ¢) is simply R(|abc|). (The above definitions of the height and conductor have
the convenient property that they do not change if every eferof them-tuple is multiplied by the
same factor, and so a relative primality hypothesis is digtuanecessary for this generalization.)
Therefore thel = Q case of the uniformbc conjecture is exactly Version 4 of tlhéc conjecture,
once we take absolute values of the three numbers and rebeterso that is the largest.

Additional integers.Our last generalization, stated by Browkin and Brzezingki incorporates

more variables than the three we have been working with so far
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abc Conjecture, n-Variable Version. For every integem > 3 and every: > 0, there exists a
positive constanB3(n, ) such that all relatively prime:-tuples(a, . .., a,) of nonzero integers
with a; + - - - + a,, = 0 and no vanishing subsums satisfy

max{|ai|,...,|a.|} < B(n,e)R(|ay - - a,])*°*=.

Here, “no vanishing subsums” means that it is not possibtedaderay, . . ., a, so thata; + - - - +
ar, =0=ap.1+ -+ a, forsomel < k < n — 1; this hypothesis is necessary because of trivial
examples such gs,, as, as, ay) = (2", —2", 3", —3"), which is a relatively prime quadruple even
though some pairs of terms have huge common factors. 7Heriable version is our familiar
friend whenn = 3: given such a triplei;, as, a3, one of them has a different sign than the other
two, and we recover Version 4 of théc conjecture by letting: be the absolute value of the one
with a different sign and, b the absolute values of the other two.

Browkin and Brzezinski constructed examples showing theekponen?n — 5+ ¢ on the right-
hand side cannot be reduced; their constructions are rsithéar to the transfer method described
in Section 2.4. Taking = 4 for example, if(a, b, ¢) is anyabc triple, we may set

(a17 ag, as, CL4) = (a’37 3a’bc7 b37 _03)7 (20)
which one can check does satisfy+ as + a3 + a4 = 0; for these quadruples,
max{|ai, ..., |an|} = ¢* > (R(abe))* > (AR(|larazazas]))’ = & (R(|arasasas|)) ™.

Equation (20) is the = 4 case of a sequence of impressive identities: whéen3,

2n—5(n+7j5—4

4= 2j—1< 2j — 2
(21)

is ann-tuple satisfying the hypotheses of thevariable version of thebc conjecture. For these

tuples, the maximum absolute valuei&—>, while R(|a; - - - a,,|) is at most a constant (the product

of all the primes up t@n — 5, say) timesR(abc), which is at most times a constant whe(a, b, ¢)

is anabe triple. Not only does this construction show that the expoRe — 5 + ¢ would be best

possible, it also shows that thevariable version for any > 4 implies the usual three-variabtéc

conjecture. (It seems less clear whether, for example;thaiable version of thebc conjecture

implies the4-variable version.)

Interestingly, the statement of thhevariable version of thebc conjecture is not what one would
predict from a probabilistic heuristic like the one desedlin Section 4.3: the analogous argument
would lead again to a conjecture with expongént ¢ on the right-hand side. In this case, proba-
bility would lead us astray—but presumably because thefsmiunterexamples is extremely thin,
coming only from constructions like equation (20). In fattiollows from a sufficiently strong
version of Vojta’s conjecture [46, Conjecture 2.3] that éxponentn — 5 + ¢ can be reduced to
1 + ¢ if we exclude a finite number of constructions like equatidh)(for eachn. Even without
excluding these constructions, it might be possible to cedhe exponent somewhat if we insist
that then-tuple be pairwise relatively prime, rather than just rigkly prime as a tuple. In fact,
in the function field case [8] such theorems have been workédmder intermediate assumptions
such as everyn-subtuple of then-tuple being relatively prime; these theorems could ses/e a

motivation for analogous versions of thevariable conjecture, in the spirit of the previous section
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5.4. Progress towards theabc conjecture. The first players of this game were Stewart and Ti-
jdeman [37]: in 1986 they proved that

¢ < exp (KgR(abc)™) (22)

for some constank’s > 0. Their proof used bounds on linear forms in logarithms santib those
mentioned in Section 5.2, in particularpaadic version due to van der Poorten. Subsequently,
Stewart and Yu [38, 39] improved the bound (22) to

¢ < exp (K7R(abc)1/3(log R(abc))g)

for some constank’; > 0. They achieved this improvement by replacing van der Parieadic
estimates with even stronger ones due to Yu. Despite thelfatthese results were hard-earned
and at least bring the problem of boundingnto the realm of the finite, neither inequality is as
good as: < R(abc)® for any fixedB.

The number theory community has been abuzz with the topiseafitc conjecture the past few
years. In August 2012, Shinichi Mochizuki released the fimstiallment of his series of four papers
on “inter-universal Teichmuller theory”, in which he ala¢d to have proven théc conjecture as
a consequence of his work. His proof, with its incrediblegiérand heavy dependence on his past
work in anabelian geometry—a new and untested field with &domumber of practitioners—
is still under verification by the mathematical communityofdover, due to the introduction of
several arcane objects such as “Frobenioids,” “log-thedtece”, and “alien arithmetic holomorphic
structures,” a cautious response from the mathematicatrzority was inevitable.

Mochizuki published a progress report in December 2018yiming the community of the ad-
vencement that had been made towards verifying his re¢8k® the Polymath page [25] for useful
links to Mochizuki’s papers, progress report, announcesmemd other related topics.) Members
of his home university have studied his preparatory papaisraded through his manuscripts on
inter-universal Teichmduller theory, communicating witochizuki on suggested improvements
and adjustments to be made; they plan to give seminars ondtezial starting in the fall of 2014.
On the other hand, due to the esoteric nature of Mochizukvekwand the presence of some at
least superficial mistakes in the deduction of #he conjecture from his theory), it has been hard
for others to attest to the validity of his results. While araf colleagues around the world was
drawn to the task of understanding his exotic, potentialotutionary work, the reality is that it
is difficult for most academics to pause their own researdhviest the necessary energy. Several
skilled mathematicians spent a good deal of time trying tdemstand how the arguments were
structured but, after making little headway in being abled¢dfy Mochizuki’s claims, eventually
abandoned the project.

This unsettled state of affairs begs the question: when doessay that a problem in math-
ematics has been solved? Many of us would like to think we laavabsolute standard, where
proofs are accepted if and only if they are completely rigsrand complete, line by line, like a
successfully compiling computer program. But in practige,tolerate typos, allusions to proofs
of similar cases, sketches of arguments, and occasionaigag for the reader as acceptable parts
of research papers; our standard of proof in mathematicsasial construct [42, Section 4]. Re-
searchers in specialized fields form their own epistemicroanities and move forward in clusters,
building around one another’s work, and sharing their kolge with researchers in neighboring
areas as they can.

A mathematician’s results, then, are accepted only whempherary audience—the cohort of

experts occupying the same niche—has validated their acguin this case, with Mochizuki’s
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original and complex work, it will take some time for more imatnaticians to surmount the barrier
and begin exporting the ideas to the wider community. In &8 possible world, experts will come
to agree that the papers contain a proof to one of the modfisat problems in number theory,
as well as the foundations of new areas of research. Butamdiunless that happens, we must be
content with thezbc conjecture remaining a mystery, at least for now.
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