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abc TRIPLES

GREG MARTIN AND WINNIE MIAO

ABSTRACT. Theabc conjecture, one of the most famous open problems in number theory, claims
that three positive integers satisfyinga + b = c cannot simultaneously have significant repetition
among their prime factors; in particular, the product of thedistinct primes dividing the three integers
should never be much less thanc. Triples of numbers satisfyinga + b = c are calledabc triples if
the product of their distinct prime divisors is strictly less thanc. We catalog what is known about
abc triples, both numerical examples found through computation and infinite familes of examples
established theoretically. In addition, we collect motivations and heuristics supporting theabc con-
jecture, as well as some of its refinements and generalizations, and we describe the state-of-the-art
progress towards establishing the conjecture.

1. INTRODUCTION

A, B, C . . . only in mathematics could such a trite trio of letters signify a major outstanding
open problem with significant connections to multiple topics. Theabc conjectureis a simple-to-
state yet challenging problem in number theory that has stumped mathematicians for the past 30
years. It has become known for its large number of profound implications in number theory and
particularly in Diophantine equations; among these myriadconsequences are Fermat’s last theorem
(up to finitely many counterexamples), Mordell’s conjecture [12], and Roth’s theorem [5] (see [29]
for a more comprehensive list). Theabc conjecture is deeply intriguing because it unveils some
delicate tension between the additive and multiplicative properties of integers, the bread and butter
of number theorists.

The purpose of this article is to discuss examples and constructions ofabc triples, which are
trios of integers demonstrating that theabc conjecture, if true, must be only barely true. To do so
we must first, of course, describe theabc conjecture itself. We begin with a preliminary definition:
the radical of an integern, denoted byR(n), is the product of all the distinct prime factors of
n. For example,600 = 24 · 3 · 52 and soR(600) = 2 · 3 · 5 = 30. In other words,R(n) is the
largest squarefree divisor ofn. The radical is a multiplicative function: in particular, for pairwise
relatively prime integersa, b andc, we haveR(abc) = R(a)R(b)R(c). We may now state (the first
version of) theabc conjecture, which postulates that the radical of three additively-related numbers
cannot often be much smaller than the numbers themselves.

abc Conjecture, Version 1. For everyε > 0, there exist only finitely many triples(a, b, c) of
relatively prime positive integers satisfyinga + b = c for which

R(abc) < c1−ε.

A typical integer’s radical is not too much smaller than the integer itself, and soR(abc) is often
about as large asabc—that is, much larger thanc. Yet there are rare occurrences of triples(a, b, c)
satisfying the hypotheses of theabc conjecture wherec is in fact greater thanR(abc). These
special cases are referred to asabc triples; the smallest such example is(a, b, c) = (1, 8, 9), for
whichR(abc) = R(36) = 6 < 9.
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Furthermore, one can even construct an infinite sequence ofabc triples! One such example is
(a, b, c) = (1, 9n − 1, 9n): since9n − 1 ≡ 1n − 1 ≡ 0 (mod8), we see that8 divides9n − 1 for
every positive integern. Writing b = 23k for some positive integerk, we calculate thatR(abc) =
R(a)R(b)R(c) = 1 · R(23k) · 3 is at most2k · 3 = 6k, which is less thanc = 8k + 1 for everyn.
We call this aninfinite family ofabc triples; we will see many more infinite families in Section 3.

As is often the case, the literature contains various equivalent formulations of theabc conjecture,
a few of which we list now (others will appear as we proceed through the paper). For one thing,
theabc conjecture is just as commonly stated with the epsilon on theopposite side:

abc Conjecture, Version 2. For everyε > 0, there exist only finitely many triples(a, b, c) of
relatively prime positive integers satisfyinga + b = c for which

c > R(abc)1+ε.

Version 1 and Version 2 can be effortlessly obtained from each other, although we need to
remember that both statements are “for everyε > 0” statements: for example, the inequality in
Version 1 with a givenε implies the inequality in Version 2 withε replaced by ε

1−ε
. Different

versions are more or less useful in different contexts; Version 2, for instance, is closely connected
to the “quality” of anabc triple, a quantity we will define in Section 2.

For a givenε, if there are only finitely manyabc triples for whichR(abc) < c1−ε, then there
are only finitely many values ofR(abc)/c1−ε that are less than1, and we can choose the minimum
such value and call itK(ε), say. Therefore Version 1 of theabc conjecture implies a new version:

abc Conjecture, Version 3. For everyε > 0 there exists a positive constantK(ε) such that all
triples (a, b, c) of relatively prime positive integers witha+ b = c satisfy

R(abc) ≥ K(ε)c1−ε.

This new formulation really is equivalent to Version 1—moreprecisely, Version 3 with a given
positiveε implies Version 1 for any largerε. There is a parallel reformulation from Version 2:

abc Conjecture, Version 4. For everyε > 0 there exists a positive constantK ′(ε) such that all
triples (a, b, c) of relatively prime positive integers witha+ b = c satisfy

c ≤ K ′(ε)R(abc)1+ε.

It might be nice to be able to leave out the hypothesis that thethree integers(a, b, c) are relatively
prime; however, this condition is in fact indispensable. (It is worthwhile to point out the slight
difference between a set of integers beingrelatively primeand beingpairwise relatively prime:
relatively prime means there is no common prime factor shared by all its elements, while pairwise
relatively prime means that any two chosen integers from theset have no common factor. For
example, the set{6, 10, 21} is relatively prime but not pairwise relatively prime. Fortunately in our
case, theabc conjecture deals only with trios of integers related by the equationa + b = c; as it
turns out, this equation ensures that any relatively prime set(a, b, c) must also be pairwise relatively
prime.) Without that hypothesis, nothing would stop us frommultiplying any given triple by a huge
power of a primep, which would increasec as much as we wanted while only increasing the radical
R(abc) by a factor ofp at most. The most extreme example of this undesirable inflation is the triple
(a, b, c) = (2n, 2n, 2n+1), for which c = 2n+1 can be made as much larger thanR(abc) = 2 as we
wish.

Likewise, the epsilon appearing in the statements of the conjecture might seem like a nuisance,
but it turns out to be a necessity. We have already shown to be false the more simplistic assertion
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that c can be greater than the radicalR(abc) only for finitely many triples; it is even false that
the ratioc/R(abc) is bounded above. Section 3 is devoted to recording several examples that
refute these epsilon-less statements; many of these examples are “well known to the experts” yet
decidedly hard to find in the literature, and we hope gathering them together here (along with
citations, where known) is a helpful service to those studying this topic.

Before we take on that task, however, we spend some time in Section 2 looking at some nu-
merical examples ofabc triples that have been garnered over the years and by examining various
computational techniques of obtaining such triples. Afterpresenting the aforementioned infinite
families of abc triples in Section 3, we then delve into the motivation behind this deep conjec-
ture in Section 4. Lastly, in Section 5 we present some refinements and generalizations of theabc
conjecture, and discuss progress towards the conjecture and its current status. Although some of
these later results and extensions are a bit technical, the large majority of the material we present
is pleasantly elementary and accessible.

2. NUMERICAL EXAMPLES OFabc TRIPLES

Because theabc conjecture has become so prominent in the last thirty years,corresponding
roughly to the era of widespread and easily accessible computation, it is no surprise that people
have developed a sustained interest in compiling numericalexamples ofabc triples. As a matter of
fact, one can go to an onlineabc triples database [18] and list allabc triples of positive integers up
to any bound less than108, or input any integer in that range to search forabc triples containing
it. For instance, there are exactly sevenabc triples with c = 108: the one with the largest value
of b is (a, b, c) = (351,297, 99,648,703, 100,000,000) = (34 · 4,337, 77 · 112, 28 · 58), for which
R(abc) = 10,018,470.

In fact, computations ofabc triples have been carried out for much larger ranges. Typically such
computations record the triples they find according to their“quality”:

Definition. Given a triple(a, b, c) of relatively prime positive integers such thata + b = c, the
qualityq(a, b, c) of the triple is defined to be

q(a, b, c) =
log c

logR(abc)
.

For example, the quality of the smallestabc triple is q(1, 8, 9) = log 9
log 6

= 1.22629 . . . . By this
definition, a triple will be anabc triple only if q(a, b, c) > 1. And indeed, we can reformulate the
abc conjecture yet again, by solving the inequality in Version 2for 1 + ε:

abc Conjecture, Version 5. For everyε > 0, there exist only finitely many triples(a, b, c) of
relatively prime positive integers satisfyinga + b = c for whichq(a, b, c) > 1 + ε.

By looking at de Smit’s website [10], we see for example that among numbers with at most
twenty digits, there are exactly236 abc triples of quality at least1.4. Atop that list is the triple

(a, b, c) = (2, 6,436,341, 6,436,343) = (2, 310 · 109, 235), (1)

for whichq(a, b, c) = 1.62991 . . . ; this is the highest quality of any knownabc triple (and possibly
the highest quality of anyabc triple in the universe!). This triple was discovered in 1987by the
French mathematician E. Reyssat (apparently by “brute force”, according to [20, page 137]). de
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Smit’s list also includes anabc triple, discovered by I. J. Calvo, wherec has a whopping2,958
digits: the triple

(a, b, c) =
(

33 · 313 · A,
5362 · 7109 · 117 · 17326 · 3711 · 5333 · 59179 · 67137 · 7976 · 103348 · 10912 · 113103 · 13142 · 15112 · 163166,

2465 · 1376 · 1957 · 23611 · 2919 · 4111 · 4398 · 6184 · 7113 · 73250 · 8330 · 8910 · 9780·
· 10145 · 1277 · 1378 · 1393 · 167253 · 17325

)

(2)

has quality at least1.01522 . . . , whereA = (c−b)/933 is a number with2,854 digits. (Interestingly,
as is often the case with large numbers,A is easily shown to be composite—by calculating that
2A−1 6≡ 1 (modA) and invoking Fermat’s little theorem, for example—but itsfactorization is
unknown.)

Reken mee met ABC, hosted by the Mathematical Institute of Leiden University[32], is a dis-
tributive computing program aiming to collect experimental data on theabc conjecture. The project
is based on the BOINC platform [2], and any individual with a computer can download the soft-
ware and join in the hunt forabc triples. The project currently has over150,000 users and has
tested nearly three quintillion triples—not too much less than the number of insects on Earth!

People have developed many different techniques for findingabc triples, using tools from all
parts of number theory and neighboring fields. To give a flavorof the wide variety of techniques,
we describe six of them now.

2.1. ABC@home algorithm. The ABC@home project, which supports theReken mee met ABC
distributed computation described above, uses the following algorithm [1] to search exhaustively
for abc triples.

Suppose that(a, b, c) is anabc triple of numbers all less thanN . Rename the integers{a, b, c}
as{x, y, z} so thatx, y, andz have the smallest, middle, and largest radical, respectively. Since
(a, b, c) is anabc triple, we haveR(a)R(b)R(c) < c < N , and soR(x)R(y)R(z) < N . From this
inequality and the inequalitiesR(x) < R(y) < R(z), it is easy to deduce thatR(y) <

√
N and

R(x) < N/R(y)2.
We may therefore search forabc triples up toN by sorting them according to their smallest

two radicalsR(x) andR(y), both of which are at most
√
N . First, we make a list of all of the

squarefree numbers less than
√
N (by a variant of the sieve of Eratosthenes, say). For every pair

of relatively prime numbers(r, s) from this list that satisfyr < N/s2, we calculate all pairs of
numbers(x, y) for whichR(x) = r andR(y) = s. There are two ways of completing the pair
(x, y) to a triple where two numbers sum to the third: we can set either z = x+ y or z = |x− y|.
If s < R(z) < N/rs, then we have discovered a newabc triple, namely the sorted ordering of
(x, y, z).

2.2. Continued fractions. The(simple) continued fractionof an irrational numberθ is an expres-
sion of the form

θ = a0 +
1

a1 +
1

a2+
1

a3+···

, (3)

wherea0 is an integer andaj is a positive integer for eachj ≥ 1. Calculating the “partial quotients”
a0, a1, . . . of a given irrational numberθ turns out to be a simple variant of the Euclidean algorithm
(which at its heart is simply division with remainder). If wereplace the infinite tailaj + 1

aj+1+···
4



of the continued fraction withaj itself, we obtain a rational number called thejth convergentto θ.
The theory of these convergents, and how they comprise the best rational approximations toθ in a
suitable sense, is extremely interesting [30, Chapter 7].

For example, we calculate the continued fraction of the irrational number5
√
109, which has been

cunningly chosen for its relationship to Reyssat’s example(1):

5
√
109 = 2 +

1

1 + 1
1+ 1

4+ 1

77,733+ 1
2+···

.

Noting that the quantity4 + 1
77,733+ 1

2+···

is extremely close to4, we form the approximation

5
√
109 ≈ 2 +

1

1 + 1
1+ 1

4

=
23

9
,

which is the third convergent to5
√
109. (In this particular case, we might have found this approx-

imation just by examining the decimal expansion5
√
109 = 2.555555399...!) This approximation

tells us that95 · 109 ≈ 235, and in fact their difference is exactly2, yielding Reyssat’s triple
(2, 95 · 109, 235).

In general, we begin with an irrational rootθ = k
√
m of an integerm and compute its continued

fraction. At any point, when we see a relatively large partial quotientaj+1, we truncate the infinite
continued fraction (3) afteraj to obtain thejth convergent, which we write asp/q. We have thus
found integersp andq such thatp/q ≈ k

√
m, or equivalentlymqk ≈ pk. We then check the triple

candidate(|mqk − pk|, mqk, pk) to see whether its quality exceeds1.
For the curious reader, [7] contains a list of ninetyabc triples, all with quality exceeding1.4,

that can be found via this continued fraction method.

2.3. The LLL method. Another interesting method to findabc triples, proposed by Dokchitser [11],
employs a famous “lattice basis reduction” algorithm by Lenstra, Lenstra, and Lovász [24]. Alat-
tice is a discrete subgroup ofRn that is closed under addition; for example, the usual integer lattice
Z3 is the set of all integer linear combinations of the vectors(1, 0, 0), (0, 1, 0), (0, 0, 1) insideR3.
Those three vectors form abasisfor the integer lattice, but so do say(12, 34, 39), (20, 57, 65), (95, 269, 309);
just like vector spaces, a lattice can have many basis. Givena complicated basis for a lattice, like
this latter one, theLLL algorithm converts it into a much nicer basis, like the former one—one
with smaller entries, and for which the basis elements are nearly orthogonal.

To apply this tool to the construction ofabc triples, we select large integersr, s, t that are com-
parable in size and have very small radicals (high powers of small primes, for example, or products
of these). If we can find small integersu, v, w such that

ur + vs+ wt = 0, (4)

then(|u|r, |v|s, |w|t) has a good chance of being anabc triple: the radicals ofr, s, twere all chosen
to be small, and the integers|u|, |v|, |w| themselves are small and can only contribute so much to
the radical of the product.

The set of all integer vectors(u, v, w) satisfying equation (4) is a two-dimensional sublattice of
Z3; however, the usual methods of finding a basis for this sublattice result in basis vectors with
very large entries. We run the LLL algorithm on this basis to find a reduced basis{b1,b2} for the
lattice of solutions to equation (4), where the new basis vectors have much smaller entries. We
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may now consider any linear combination(u, v, w) = s1b1+s2b2, wheres1, s2 are small integers,
and test the triple(|u|r, |v|s, |w|t) to see if it is anabc triple.

In this fashion, Dokchitser was able to obtain 41 newabc triples, including(1310 · 372, 37 · 195 ·
714 · 223, 226 · 512 · 1,873) which has a quality of1.5094, the11th highest quality known.

2.4. Transfer method. Yet another approach to finding newabc triples is to take existing triples
and “transfer” them, using certain polynomial identities,to create new triples.

For example, note that ifa+ b = c, thena2 + c(b− a) = b2, sincec(b− a) = (b+ a)(b− a) =
b2 − a2. Note also that ifR(abc) < c, then

R(a2 · c(b− a) · b2) ≤ R(a)R(b)R(c)R(b − a) =
R(abc)

c
cR(b− a) < c(b− a) < b2 (5)

as well. In other words, if(a, b, c) is anabc triple with a < b, then(a2, c(b− a), b2) is also anabc
triple. Indeed, if the qualityq(a, b, c) is larger than1, then a quick calculation [43, page 16] shows
that

q(a2, c(b− a), b2) >
2q(a, b, c)

q(a, b, c) + 1
> 1.

For future reference, we also note a slight improvement: if(a, b, c) is anabc triple wherea andb
are both odd (which forces bothc andb− a to be even), then

R(a2 · c(b− a) · b2) < c

R(abc)
R(a2 · c(b− a) · b2)

≤ c

R(abc)
R(a)R(b)R(c)R

(

b− a

2

)

< c

(

b− a

2

)

<
b2

2
. (6)

When we are looking for good numerical examples, moreover, we can try this transfer method
on many knownabc triples and hope for some extra repeated factors inb − a. For example,
we can start with the smallabc-triple (7, 243, 250), whose radical is210 and whose quality is
about1.03261. Using the above transfer identity leads to the triple(72, 250(243 − 7), 2432) =
(49, 59,000, 59,049). We know from the bound (5) that the radical of this new tripleis at most
210 · (243−7). However,243−7 = 22 · 59, and the factors of2 are dropped from the radical since
250 is already even. Consequently, the radical of this new triple is only210 · 59 = 12,390, and the
quality of (49, 59,000, 59,049) is about1.16568, which is quite a bit better than the original triple.

The transfer method, then, is to start with existingabc triples, apply a polynomial identity to
obtain a new triple, and then check for fortunate coincidences that make the new triple even better
than we already knew it would be. It is an experimentation game, where different starting triples
can yield results from mediocre to extremely good. In fact, we can experiment not only with the
starting triple but with the polynomial identity as well! Some other examples of such polynomial
transfers, which are all easily seen to be valid whenc = a + b, include:

(b− a)2 + 4ab = c2

a3 + b3 = c(b2 − ab+ a2)

a2(a + 3b) + b2(3a+ b) = c3

a3(a+ 2b) + c3(b− a) = b3(2a+ b)

27c5(b− a) + a3(3a + 5b)2(3a+ 2b) = b3(5a+ 3b)2(2a+ 3b).

6



Moreover, there is even a whole family of such identities

an−k

( k
∑

j=0

(

n

j

)

ak−jbj
)

+ bk+1

( n−k−1
∑

j=0

(

n

j

)

ajbn−k−1−j

)

= cn

which comes from splitting the binomial formula for(a + b)n at some term with index1 ≤ k ≤
n−1. (Note that the third identity on the above list is then = 3, k = 1 case of this general family.)

The interested reader can refer to [43, Section 2.3] for a detailed examination of these polyno-
mial transfers as a way of generating triples.

2.5. An elliptic curve method. Before describing the next method of finding examples ofabc
triples, which was developed by van der Horst [43], we say a few words aboutelliptic curves. For
our purposes, an elliptic curve can be defined as the set of solutions of a suitable cubic equation
in two variables, such as (7) or (15). That set of solutions depends, of course, on what domain
we select for the variables; it turns out to be fruitful to consider the same equation with different
domains, as we will see below. Certainly, elliptic curves are very fascinating in their own right
(see [47] or [34], for example, where one can find all the factsabout elliptic curves that we describe
in this paper). For now, we need only to talk about the group structure of an elliptic curve; we will
mentionj-invariants in the next section and other elliptic curve invariants in Section 4.2.

Amazingly, the points on an elliptic curve can be turned intoan abelian group (once a “point
at infinity”, representing the group identity, is included)using a suitable definition of addition:
three points on the elliptic curve sum to the identity precisely when they are collinear. When
the variables are allowed to be complex numbers, the resulting abelian group is isomorphic to
a (two-dimensional) torus. On the other hand, if the coefficients and the variables of the cubic
equation are restricted to rational numbers, then the resulting abelian group is finitely generated
(this is the Mordell–Weil theorem), thus having a free partZrank and a well-understood torsion
subgroup. (The rank, on the other hand, is not well understood in general, which is why it is one
of the subjects of the Birch and Swinnerton–Dyer Conjecture, one of the seven Clay Mathematics
Institute’s Millennium Problems [48]).

We now describe a slight variant of van der Horst’s method of searching forabc triples. For any
fixed integersx0 < y0, setk = y30 − x30 and consider the elliptic curve given by the equation

y3 = x3 + k, (7)

where the variablesx andy are allowed to be not just integers but rational numbers in general.
Whenever(x, y) = (p

d
, q
d
) is a point on this elliptic curve (for simplicity we assume thatp, q, andd

are positive), we haveq3 = p3 + kd3. ClearlyR(p3, kd3, q3) ≤ kdpq < kdq2, and so this triple is
anabc triple wheneverq > kd, or equivalently wheny > k; indeed, the largery is, the higher the
quality of the triple will be.

It is probably not the case thaty0 itself is larger thank; however, we can use the group operation
on the elliptic curve to search for rational solutions to equation (7) other than(x0, y0). Simply
adding the point(x0, y0) to itself repeatedly (adding, that is, using the group law onthe elliptic
curve) yields a sequence of points on the elliptic curve thatis typically infinite. van der Horst even
develops a way of predicting which elements of this sequencewill have largey-values: he writes
down a group homomorphism from the elliptic curve to the unitcircle in the complex plane that
takes points with large coordinates to complex numbers near1. Since it is easy to calculate which
powers of a complex number are close to1, one can take the corresponding multiples of(x0, y0)
back on the elliptic curve and check how good the corresponding triples’ qualities are. One feature
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of this method is that all three numbers in theabc triples it generates have small radicals, not just
one or two of them.

The exact algorithm and variants used by van der Horst [43, Sections 4.2–4.3] discovered
some notableabc triples. The point(x, y) = (19

93
, 289

93
) on the elliptic curvey3 = x3 + 30 does

not havey > 30, but fortunately the numerator ofy happens to be a square, and so we get
to divide the radical by an extra factor of17. The resultingabc triple (193, 30 · 933, 2893) =
(6,859, 24,130,710, 24,137,569) has radical300,390 and quality about1.34778. Moreover, the al-
gorithm often finds rational solutions with huge numeratorsand denominators, and is thus suited
for finding enormousabc triples; van der Horst reports [43, Chapter 5] finding a pointon the el-
liptic curvey3 = x3 + 854 that yields anabc triple with quality about1.01635, where the largest
integer in the triple has340 digits.

2.6. Differences ofj-invariants. We conclude this section with some exoticabc triples that are
found unexpectedly when discussing factorizations of “j-invariants”.

There is a beautiful link between lattices and elliptic curves: through two “elliptic functions”
studied by Weierstrass, it is known that every elliptic curve can be represented asy2 = 4x3 −
g2(τ)x − g3(τ), whereg2(τ) and g3(τ) are invariants that correspond to a fixed lattice. More
specifically, they are the modular forms

g2(τ) = 60
∑

m,n∈Z
(m,n)6=(0,0)

1

(mτ + n)4

g3(τ) = 140
∑

m,n∈Z
(m,n)6=(0,0)

1

(mτ + n)6

whereτ , a complex number with positive imaginary part, determinesthe relevant lattice as the set
of all numbers of the formmτ+nwithm,n integral. (This lattice, by the way, is exactly the lattice
one needs to quotient the complex plane by to realize the elliptic curve; since a plane modulo a
lattice is a torus, this description corroborates the fact that every elliptic curve is isomorphic to a
torus, as mentioned in the previous section.)

Now, we define thej-invariant j(τ) of an elliptic curve by the formula

j(τ) =
1728g32(τ)

g32(τ)− 27g23(τ)
.

This j-invariant is a modular function with ubiquitous remarkable properties and applications in
complex analysis, algebraic number theory, transcendencetheory, and so on. When the argumentτ
lies in an imaginary quadratic fieldQ(

√
−d) for some positive integerd, the valuesj(τ) are called

“singular moduli”, and the associated elliptic curves possess extra endomorphisms and are said to
have “complex multiplication”. This singular modulus is analgebraic integer lying in some abelian
extension ofQ(

√
−d); remarkably, the degree of its minimal polynomial is exactly the “class

number”h(−d), which is the number of binary quadratic formsax2+bxy+cy2 of discriminant−d
that are not equivalent to one another under linear changes of variables. In particular, by the Stark–
Heegner theorem [34, Appendix C, Section 11], there are onlythirteen negative discriminants−d
that have class number equal to1, namely−3, −4, −7, −8, −11,−12, −16,−19, −27,−28, −43,
−67, and−163; the correspondingj-invariants are thus actual integers.
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As it happens, these thirteen specialj-invariants are all forced to be perfect cubes of integers.
Equally marvelously, the difference of two of these specialj-invariants is very nearly a perfect
square [16, 23]. The corresponding triple of integers is therefore a prime candidate for anabc
triple (at least, once the three integers are divided by their greatest common divisor). Gross and
Zagier [16] cite an example withτ = (−1 + i

√
163)/2, where the three integers

j(i)

1728
= 1

−j(τ)
1728

= 151,931,373,056,000 = 212 · 53 · 233 · 293

j(i)− j(τ)

1728
= 151,931,373,056,001 = 33 · 72 · 112 · 192 · 1272 · 163

form anabc triple with quality about1.20362. Going through all
(

13
2

)

= 78 possible pairs of special
j-invariants, we find that the best resultingabc triple comes from bothj(τ4)− j(τ43) andj(τ16)−
j(τ67), whereτ(d) = 1

2
(d +

√
−d): the triple is(1, 512,000, 512,001) = (1, 212 · 53, 35 · 72 · 43)

and has quality about1.44331.

3. INFINITE FAMILIES OF abc TRIPLES

All of the numerical examples from Section 2, however interesting, cannot shed any light on
whether theabc conjecture is true or false: the “only finitely many” or “there exists a constant”
clauses in its various versions preclude us from drawing conclusions from any finite number of
examples. For that matter, any finite number of examples cannot rule out even more ambitious
possible versions of theabc conjecture. For instance, could there be an absolute constant S > 0
such thatc < S·R(abc) always? This statement, similar to theabc conjecture but without the messy
epsilons, might be called the “simplisticabc conjecture”. Again, no finite amount of computation
can resolve this question.

What we need, to help us decide whether these statements are true or false, are constructions of
infinite families ofabc triples. And it turns out that several such constructions exist; any one of
these constructions shows that the simplisticabc conjecture is false. In other words, the construc-
tions in this section demonstrate that the epsilons in theabc conjecture are necessary if we hope
that the assertion is true.

3.1. The transfer method again. Recall from Section 2.4 that if(a, b, c) is anabc triple, then so
is (a2, c(b− a), b2). In particular, if(1, c− 1, c) is anabc triple, then so is(1, c2 − 2c, (c− 1)2). Of
course, we can iterate this transfer multiple times in a row:for example,(1, (c2 − 2c)2 − 1, (c2 −
2c)2) = (1, c4 − 4c3 + 4c2 − 1, c4 − 4c3 + 4c2) will also be anabc triple. As it happens, doing
this double transfer always allow us to remove an extra factor of 2 from the radical. For example,
suppose thatc is odd. Then, by settinga = 1 andb = c− 1 in the third and last terms of the chain
of inequalities (5), we know that

(c− 1)2

R
(

(c2 − 2c)(c− 1)2
) ≥ c

R
(

(c− 1)c
) .

9



But now (c − 1)2 is even, so replacinga, b, andc in the second and last terms of the chain of
inequalities (6) with1, c2 − 2c, and(c− 1)2, we find that

(c2 − 2c)2

R
(

((c2 − 2c)2 − 1)(c2 − 2c)2
) ≥ 2

(c− 1)2

R
(

(c2 − 2c)(c− 1)2
) ≥ 2

c

R
(

(c− 1)c
) . (8)

We can iterate this double transfer endlessly to create an infinite sequence. Let us setc0 = 9, cor-
responding to theabc triple (1, 8, 9), and for everyn ≥ 0 definecn+1 = c4n − 4c3n+4c2n. For exam-
ple, c1 = 3,969, corresponding to the double transfer(1, 8, 9) → (1, 63, 64) → (1, 3,968, 3,969).
Equation (8) tells us that

cn+1

R
(

(cn+1 − 1)cn+1

) ≥ 2
cn

R
(

(cn − 1)cn
)

for everyn ≥ 0. Sincec0/R((c0 − 1)c0) =
3
2
, this implies that

cn

R
(

(cn − 1)cn
) ≥ 2n−1 · 3 (9)

for everyn ≥ 0. And since2n−1 · 3 exceeds any constant we might care to name in advance, we
have just created an infinite sequence ofabc triples (1, cn − 1, cn) that repudiates the “simplistic
abc conjecture”!

We can convert the inequality (9) into a quantitative measure of how much smaller thancn
this radical is. Note thatcn ≤ c4n−1 for everyn ≥ 1, and socn ≤ c4

n

0 = 94
n

. In particular,
log cn ≤ 4n log 9, and so2n ≥

√
log cn/

√
log 9. It now follows from (9), whena = 1, b = cn − 1,

andc = cn, that

R(abc) ≤ c

2n−1 · 3 ≤ 2
√
log 9

3

c√
log c

. (10)

To this point, it hasn’t mattered which logarithm we’ve beenusing, but now we clarify that we
are usinglog x to denote the natural logarithm (which is often writtenln x), as is standard in
analytic number theory. With that admission out of the way, we remark that the constant2

√
log 9
3

is
approximately0.988203.

This bound for the radical of these triples can be re-expressed as an inequality about their quality:
the lower bound

q(a, b, c) =
log c

logR(abc)
≥ log c

log c− log
√
log c+ log(2

3

√
log 9)

≥ log c

log c− 1
2
log log c

>
log c+ 1

2
log log c

log c
= 1 +

log log c

2 log c
(11)

holds when(a, b, c) = (1, cn − 1, cn). Notice that these qualities are all greater than1, but the
lower bound does tend to1 asc becomes larger and larger. If the lower bound tended to a constant
larger than1, this sequence would disprove the actualabc conjecture (specifically Version 5) and
this whole paper would need to be rewritten!

3.2. Folklore examples. There are several known constructions of infinite sequencesof abc triples,
each of which provides a counterexample to the “simplisticabc conjecture”. We present a few of
these constructions in this section. Unlike the recursive construction from the previous section,
these constructions have very simple closed forms which make it obvious that the smallest and
largest numbers in the triples have extremely small radicals. In each case, a quick number theory
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lemma is required to show that the radical of the middle number is somewhat smaller than the
number itself. These constructions are simple enough (to those well-versed in the field) that it is
nearly impossible to determine who first came up with them; indeed, some cannot even be found
explicitly in any publication despite that they are “well known”! Part of the motivation for this
paper was to ensure that these families ofabc triples are explicitly recorded in the literature; we
have included earlier citations whenever we could locate them.

Lemma 1. If p is an odd prime, thenp2 divides2p(p−1) − 1.

Proof. Euler’s theorem [17, page 63] says that ifa andm are relatively prime positive integers,
thenaφ(m) ≡ 1 (modm), whereφ(m) is the Euler phi-function. Applied witha = 2 andm = p2,
for which φ(m) = p(p − 1), Euler’s theorem yields2p(p−1) ≡ 1 (modp2), which is exactly the
conclusion of the lemma. �

The following construction was recorded by Granville and Tucker [15].

Example 1. For any odd primep, set(a, b, c) = (1, 2p(p−1) − 1, 2p(p−1)). We know by Lemma 1
thatp2 dividesb, and soR(b) ≤ b/p. It follows that

R(abc) = R(a)R(b)R(c) ≤ 1 · b
p
· 2 < 2c

p
. (12)

Since the sequence of primesp becomes larger than any constant we want, this family of triples
does contradict the “simplisticabc conjecture”.

For easier comparison to other examples, we can rewrite the right-hand side in a form involving
only c. Sincec < 2p

2

, we havelog c < p2 log 2 and sop >
√
log c√
log 2

. Combining this with (12) yields

R(abc) < 2
√

log 2
c√
log c

.

This upper bound for the radical has the same shape as the bound in equation (10) for our first
example, but with the slightly worse constant2

√
log 2 ≈ 1.66511.

Our next infinite family involves a lemma providing divisibility by high powers of a prime,
rather than just its square.

Lemma 2. If n is a nonnegative integer, then7n+1 divides87
n − 1.

Proof. We proceed by induction; the base casen = 0 is immediate. Assuming the lemma is true
for a particularn, we write

87
n+1 − 1 = 87·7

n − 1 = (87
n − 1)(86·7

n

+ 85·7
n

+ · · ·+ 87
n

+ 1).

On the right-hand side, the first factor is divisible by7n+1 by the induction hypothesis, while the
second factor is divisible by7 since each of its seven terms is congruent to1 (mod7). Therefore
7n+1 · 7 divides the left-hand side, which is the statement of the lemma forn + 1 as required. �

Example 2. For any nonnegative integern, set (a, b, c) = (1, 87
n − 1, 87

n

). Equipped with
Lemma 2, we deduce thatR(b) ≤ b/7n and thus

R(abc) = R(a)R(b)R(c) ≤ 1 · b
7n

· 2 < 2c

7n
.
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Again we have disproved the “simplisticabc conjecture”, and again we can write the right-hand
side as an expression inc alone, sincelog c = 7n log 8:

R(abc) < 2 log 8
c

log c
.

Note that we have improved the order of magnitude of the upperbound on the radical, from the
previous examples’c/

√
log c to c/ log c.

Variants of this construction abound. It is equally easy to prove by induction that2n+2 divides
32

n − 1 for anyn ≥ 1, and so a similar construction (attributed in [21, pages 40–41] to Jastrze-
bowski and Spielman) with the triple(a, b, c) = (1, 32

n − 1, 32
n

) results in the upper bound

R(abc) <
3c

2n+1
=

3 log 3

2

c

log c
.

Here the leading constant3 log 3
2

≈ 1.64792 is even better than2 log 8 ≈ 4.15888.
Various constructions of this type are easily found by replacing87

n

or 32
n

with a sequence of the
form qp

n

, wherep ≥ 2 is an integer dividingq − 1. Whenp is a prime andq is a prime power, this
construction was given by Stewart [36, Theorem 1, (3)]. All of these constructions show that the
radical is less than some constant (depending on the parameters chosen) timesc/ log c. Moreover,
the same sort of argument that led to equation (11) shows thatthe qualities of theabc triples arising
from Example 2 are essentially as large asq(a, b, c) > 1 + log log c

log c
, without the factor of2 in the

denominator. (The same bound will hold for the rest of the examples in Section 3.)

Our last example differs from the previous ones: the radicalof the middle number of the triple
is small because high powers of several primes divide it, notjust a high power of a single prime.

Lemma 3. For any positive integern, defineL = lcm[1, 2, . . . n] and t = ⌊ logn
log 2

⌋, and letP =
∏

3≤p≤n p be the product of all the odd primes up ton. ThenPL/2t divides2L − 1. In particular,

R(2L − 1) ≤ 2t(2L − 1)

L
.

Proof. Given an odd primep ≤ n, let r = ⌊ logn
log p

⌋, so thatpr is the largest power ofp not exceed-
ing n. Clearly bothpr andp− 1, being at mostn in size, divideL; since they are relatively prime,
their productpr(p − 1) also dividesL. As 2 is relatively prime topr+1, Euler’s theorem tells us
that2φ(p

r+1) = 2p
r(p−1) ≡ 1 (modpr+1), and therefore2L ≡ 1 (modpr+1) sinceL is a multiple of

pr(p − 1). Thereforepr+1 divides2L − 1 for every odd primep ≤ n. All of these prime powers
are relatively prime to one another, and hence their product

∏

3≤p≤n

pr+1 =
∏

3≤p≤n

p
∏

3≤p≤n

pr = P
L

2t

also divides2L − 1, as claimed. In this last equality, we used the fact thatlcm[1, 2, . . . n] is com-
posed exactly from the highest power of each distinct prime factor found amongst the factorizations

of the numbers 1 throughn. In other wordsL = 2⌊
log n

log 2
⌋∏

3≤p≤n p
⌊ log n

log p
⌋ = 2t

∏

3≤p≤n p
r.

Note also that every prime dividingL/2t is an odd prime not exceedingn, hence dividesP as
well. The above argument shows thatP divides the quotient(2L − 1)/(L/2t), and so the primes
dividing L/2t are already represented in this quotient; consequently, the radical of2L − 1 is no
larger than(2L − 1)/(L/2t). �
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Example 3. For any positive integern, defineL = lcm[1, 2, . . . n], and set(a, b, c) = (1, 2L −
1, 2L). Using the notationt = ⌊ logn

log 2
⌋ andP =

∏

3≤p≤n p from Lemma 3, we have2t < n and
log c = L log 2 and thus

R(abc) ≤ 1 · 2
t(2L − 1)

L
· 2 < 2 log 2

nc

log c
.

It is a bit harder than in the previous examples to write the right-hand side solely in terms ofc,
since the relationship betweenn and c is more complicated. The Chebyshev functionψ(n) =
log lcm[1, . . . , n] (often written in terms of the “von Mangoldt function”Λ(n)) satisfiesψ(n) ∼ n
by the famous prime number theorem [3, pages 74–75]. Therefore log log c = logL+ log log 2 =
ψ(n) + log log 2 ∼ n, and hence we have the asymptotic inequality

R(abc) . 2 log 2
c log log c

log c
,

which has a slightly worse order of magnitude than the last two examples. For what it’s worth, we
can remove a factor of2 from the right-hand side by restrictingn to be just less than a power of2.

3.3. A curious divisibility. All of the abc triples constructed in this section so far share the prop-
erty that their smallest number equals1. However, we have a final construction to describe, one
that was discovered only recently [6], which has the featurethat all three numbers in the con-
structedabc triples are nearly the same size. This construction relies on the following quite strange
divisibility relationship.

Lemma 4. For any positive integern satisfyingn ≡ 2 (mod6),
(

n2 − n + 1

3

)2

divides nn − (n− 1)n−1.

Settingn = 6k + 2 for a nonnegative integerk reveals that the lemma is equivalent to the curious
statement:

(12k2 + 6k + 1)2 divides (6k + 2)6k+2 − (6k + 1)6k+1. (13)

Proof. Given a nonnegative integerk, setQ = 12k2 + 6k + 1. To establsh the divisibility (13),
we need to show that(6k + 2)6k+2 ≡ (6k + 1)6k+1 (modQ2). Our main tool will be the following
observation: ifa ≡ bQ+1 (modQ2), thenaj ≡ jbQ+1 (modQ2) for any positive integerj. This
observation follows from the binomial expansion

aj ≡ (1 + bQ)j =

j
∑

i=0

(

j

i

)

(bQ)i ≡ 1 + j · bQ +

j
∑

i=2

0 (modQ2).

Since(6k + 1)3 = 18kQ+ 1 and−(6k + 2)3 = −(18k + 9)Q+ 1, we can certainly say that

(6k + 1)3 ≡ 18kQ+ 1 (modQ2)

−(6k + 2)3 ≡ −(18k + 9)Q+ 1 (modQ2).

Raising both congruences to the2kth power using our observation, we see that

(6k + 1)6k ≡ 2k · 18kQ + 1 = (3Q− (18k + 3))Q+ 1 ≡ −(18k + 3)Q+ 1 (modQ2)

(6k + 2)6k ≡ −2k(18k + 9)Q+ 1 = (−3Q+ 3)Q + 1 ≡ 3Q+ 1 (modQ2).
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We now calculate that

(6k + 2)6k+2 − (6k + 1)6k+1 ≡ (3Q+ 1)(6k + 2)2 − (−(18k + 3)Q+ 1)(6k + 1)

= (3Q+ 1)(3Q+ 6k + 1) + (9Q− 18k − 6)Q− (6k + 1)

= 18Q2 ≡ 0 (modQ2),

which is what we needed to show. �

Remark. Although Lemma 4 has the elementary (if unilluminating) proof just given, there is in
fact a deeper explanation [6, Proposition 4.3] behind this interesting divisibility. It is related to the
trinomial xn + x + 1, which is reducible whenn ≡ 2 (mod6), and the relationship between its
discriminantnn − (n− 1)n−1 and the resultant of its irreducible factors.

All this work allows us to establish a bound for the radical ofb in the infinite family ofabc triples
we will now construct.

Example 4. For any odd integerk ≥ 7, setn = 2k and

(a, b, c) =
(

(n− 1)n−1, nn − (n− 1)n−1, nn
)

.

Sincen is congruent to2 (mod6), Lemma 4 tells us that(n
2−n+1

3
)2 dividesb. Therefore

R(abc) = R(a)R(b)R(c) ≤ (n− 1) · b

(n2 − n+ 1)/3
· 2 < 6b

n
<

6c

n
. (14)

Seeking a lower bound onn, we writelog c = n logn andlog log c = log n + log logn < 4
3
log n

whenn > 100, hencen = log c/ logn > log c/(3
4
log log c) and so

R(abc) <
6b

n
<

6c

log c/(3
4
log log c)

=
8c log log c

log c

whenk ≥ 7.

As stated so far, this construction yields a bound on the radical comparable to the bound from
Example 3, but with a worse constant (although for largen, the8 can essentially be replaced by
a 6). However, if we choose specific values forn in the previous example in a manner suggested
by Carl Pomerance, we can further decrease the radicals of the correspondingabc triples to be on
par with the bound from Example 2.

Example 5. For any positive integerj, setk = 3 · 2j in the triple of Example 4, so thatn = 87
j

.
Using Lemma 2, we see that7j+1 dividesn−1 and thusR(a) = R(n−1) ≤ (n−1)/7j . Therefore
for theabc triples

(a, b, c) =
(

(

87
j − 1

)87
j−1

, 87
j87

j

−
(

87
j − 1

)87
j−1

, 87
j87

j
)

we may improve the bound (14) to

R(abc) = R(a)R(b)R(c) ≤ n− 1

7j
· b

(n2 − n + 1)/3
· 2 < 6b

7jn
<

6c

7jn
= 6 log 8

c

log c
.

We end this section with a question: we have seen several elementary constructions of infinite
families ofabc triples, all of which yield an upper bound onR(abc) somewhere betweenc/

√
log c

andc/ log c in magnitude. Is there an elementary construction of a sequence ofabc triples satisfying
R(abc) < c/(log c)λ for someλ > 1, or equivalently, satisfyingq(a, b, c) & 1 + λ log log c/ log c?
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(We will see in Section 5.1 that such sequences exist, but theproof does not supply a formula for
them, merely a proof of their existence.)

4. BACKGROUND, MOTIVATION , AND SUPPORT FOR THEabc CONJECTURE

Theabc conjecture was proposed in 1985 by Masser and Oesterlé [27,31], who were motivated
by two analogous problems concerning polynomial rings and elliptic curves. In addition, after the
abc conjecture’s appearance, number theorists found a probabilistic heuristic that also supports its
statement. In this section we describe these links between theabc conjecture and other branches
of mathematics.

4.1. The Mason–Stothers theorem.Despite their very different appearances, the integersZ and
the ring of polynomials with complex coefficientsC[x] have a lot in common. In both settings,
all nonzero elements enjoy unique factorization into irreducible elements: every integer can be
written uniquely as a product of primes (and possibly−1), while every polynomial can be written
uniquely as a product of monic linear factorsx − ρ (and possibly a nonzero leading coefficient
in C). Indeed, each ring is a principal ideal domain (PID), whichis even stronger than being a
unique factorization domain (UFD). In particular, one can define the radicalR(a) of a polynomial
a(x) ∈ C[x] to simply be the product of all distinct monic linear factorsthat divide it, in perfect
analogy with the radical of an integer. Similarly, one can define the greatest common divisor
of two polynomials and hence decide whether two polynomialsare relatively prime. (For these
definitions, we ignore the leading coefficients, which are “units” in C[x], just as we might take
absolute values of integers to ignore their sign for the purposes of examining their factors.) It
follows that the degree of the radical of a polynomial inC[x] is the same as the number of distinct
complex roots of the polynomial.

The integers generate the rational numbersQ, which are quotients of one integer by a second
nonzero integer; the polynomials generate the aptly named rational functionsC(x), which are
quotients of one polynomial by a second polynomial that is not identically zero. The rational
numbers form the simplest example of anumber field(we will say more about number fields in
Section 5.3), while the field of rational functions overC form a function field; and it is a robust
phenomenon in number theory (see for example [28, Chapter 1,Section 14]) that most results
in number fields have analogous formulations in function fields. We have seen that irreducible
polynomials correspond to prime numbers; another entry in the “dictionary” between the two rings
is that the degree of a polynomial corresponds to the logarithm of a positive integer.

Masser’s description of theabc conjecture was motivated by the following theorem in the “func-
tion field case”, independently discovered by Stothers and Mason [40, 26] in the 1980s:

Theorem (Mason–Stothers). Let a(x), b(x), c(x) ∈ C[x] be relatively prime polynomials satisfy-
ing a(x) + b(x) = c(x). Then

max
{

deg(a), deg(b), deg(c)
}

≤ deg(R(abc))− 1.

As it happens, the proof of the Mason–Stothers theorem is actually quite elementary. Some
versions of the proof (see for example [22, Chapter IV, Sections 3 and 9]) rely on one important
feature of polynomials that is completely absent from the integers: the ability to take derivatives.
For example, it is not hard to show that a polynomial is squarefree (that is, has no repeated factors
in its factorization into linear polynomials) if and only ifit is relatively prime to its derivative.
Number theorists would love to be able to detect squarefree integers so easily!

15



What would happen if, in the Mason–Stothers theorem, we translated from the function field
setting to the number field setting by replacing degree with logarithm everywhere? We would
obtain the statementmax

{

log(a), log(b), log(c)
}

+1 ≤ log(R(abc)), which, after exponentiating,
becomesemax{a, b, c} ≤ R(abc), or simplyR(abc) ≥ ec if we order the three positive integers
so thata+ b = c. This is an instance of the “simplisticabc conjecture” we disproved thoroughly in
Section 3. So the analogy between function fields and number fields, while fruitful, should always
be taken with an epsilon grain of salt.

4.2. The Szpiro conjecture. In addition to the analogy with triples of polynomials, Oesterlé’s
motivation for formulating theabc conjecture had an additional source: the subject of elliptic
curves. We need to give a quick crash course in invariants of elliptic curves before stating the
Szpiro conjecture, in which Oesterlé was interested; our goal is to say just enough to convey a
decent idea of what the “minimal discriminant” and “conductor” of an elliptic curve are. The
reader can, if desired, skip the next four paragraphs and jump straight to the punch line.

A general cubic plane curve is given by the equationy2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and sometimes by other forms, such as equation (7); but we will focus on cubic curves in “short
Weierstrass form”

y2 = x3 + a4x+ a6. (15)

It is always possible to find a change of variables to write a cubic plane curve in short Weierstrass
form. (For example, a change of variables transforms the equation (7) into the formy2 = x3 −
432d2.) In this situation, thediscriminantof the curve is the quantity∆ = −16(4a34 + 27a26). If
∆ = 0, then the cubic curve has a singularity, which is typically anode (where the graph of the
curve crosses itself) but is a cusp ifa4 = a6 = 0, when the equation is simplyy2 = x3. But as long
as∆ 6= 0, the cubic curve has no singularities and is called anelliptic curve.

Whena4 anda6 are rational numbers, a change of variables can be uniquely chosen so that the
coefficientsa4 anda6 become integers witha4 not divisible by the fourth power of any prime;
the resulting equation is aminimal model, and its discriminant theminimal discriminant, for the
elliptic curve. This minimal discriminant∆ is equal to the original discriminant times the twelfth
power of a rational number, chosen so that the resulting product is an integer not divisible by the
twelfth power of any prime.

Once we have a minimal model for an elliptic curve over the rational numbers, we canreduce
the elliptic curve modulo any primep: we simply consider the constants and variables in the
equationy2 = x3 + a4x + a6 to be elements ofZ/pZ, the finite field withp elements. The
minimal discriminant∆ over this finite field is simply the residue class of the integer ∆ modulop;
in particular, the reduction-at-p of the elliptic curve is nonsingular (hence still an elliptic curve)
precisely whenp does not divide∆ (we say that the curve hasgood reductionat p). Wheneverp
divides∆, we say that the elliptic curve hasbad reductionatp. While it makes no geometric sense
to talk about nodes or cusps of the “graph” of the elliptic curve modulop—there are just a finite
number of possible points, not a whole continuum—we can still categorize possible singularities
algebraically, as above, into two types of bad reduction: the reduction-at-p has a node (which we
call multiplicative reduction) whenp divides∆ but nota4a6, while it has a cusp (which we call
additive reduction) whenp divides all of∆, a4, anda6. (We are intentionally neglecting the more
complicated cases whenp = 2 andp = 3.)

Finally, theconductorN of an elliptic curve is a number whose prime factors are precisely
those modulo which the elliptic curve has bad reduction. More specifically,N =

∏

p p
fp , where

the product is over all primesp, andfp equals0 if the elliptic curve has good reduction atp, 1 if it
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has multiplicative reduction, and2 if it has additive reduction. Since the primes of bad reduction
are precisely the primes dividing the nonzero integer∆, all but finitely many of thefp equal0,
and soN is a well-defined positive integer. Indeed,N is a multiple ofR(∆), the radical of the
discriminant, and also a divisor ofR(∆)2. An elliptic curve with no primes of additive reduction
is calledsemistable; we see that semistability is equivalent toN = R(∆). (The breakthrough by
which Andrew Wiles proved Fermat’s last theorem was showingthat every semistable elliptic curve
was associated, throughL-functions, to a modular form in a manner specified by the “Taniyama–
Shimura conjecture”, which is now the “Modularity theorem”.)

The punch line: In the early 1980s, L. Szpiro formulated the following conjecture relating the
minimal discriminant of an elliptic curve to its conductor.

Szpiro Conjecture. For everyε > 0, there exists a positive constantS(ε) such that for any elliptic
curveE defined by an equation with rational coefficients,

|∆| ≤ S(ε)N6+ε,

where∆ is the minimal discriminant ofE andN is the conductor ofE.

Oesterlé observed that the newly formulatedabc conjecture is stronger than Szpiro’s conjecture:
one can deduce Szpiro’s conjecture from theabc conjecture, but knowing Szpiro’s conjecture for
all ε > 0, one can deduce theabc conjecture only when theε in Version 4 is greater than1

5
(see

[34, Chapter VIII, exercise 8.20] and [45, Chapter 5, Appendix ABC]).
In fact, Oesterlé demonstrated [31, pages 169–170] that theabc conjecture is actually equivalent

to the following modification of the Szpiro conjecture:

Modified Szpiro Conjecture. For everyε > 0, there exists a positive constantS ′(ε) such that for
any elliptic curveE whose minimal model isy2 = x3 + a4x+ a6,

max{|a4|3, a26} ≤ S ′(ε)N6+ε,

whereN is the conductor ofE.

Since∆ = −16(4a34 + 27a26), the modified Szpiro conjecture is clearly stronger than theoriginal;
indeed, one can takeS(ε) = 16(4 + 27)S ′(ε) and prove the original conjecture from the modified
one. But it is possible, in theory, for∆ to be small only because of extreme cancellation when the
hypothetically enormous numbers4a34 and27a26 are added together (note thata4 can be negative).

The modified Szpiro conjecture is usually stated in terms of two particular invariantsc4 andc6
of an elliptic curve, rather than the coefficientsa4 anda6 we have used from the short Weierstrass
form (15); these invariants and the conductorN can be associated with any elliptic curve, no matter
what equation originally defines it. The invariantsc4 andc6 are special in the sense that they suffice
to determine any elliptic curveE up to isomorphism (indeed,E can be defined by the equation
y2 = x3−27c4x−54c6). There are algorithms for computing these invariants fromvarious defining
equations. For example (see [9, Section 3.2]), an algorithmof Laska–Kraus–Connell takesc4 and
c6, computed from any model ofE, and outputs the minimal model ofE; while Tate’s algorithm
computes, among other things, the conductor ofE.

4.3. Heuristic based on a probabilistic model.While relating theabc conjecture to other mathe-
matical statements is valuable, we might be comforted by having a more instrinsic reason to believe
in its truth. One way that analytic number theorists hone their beliefs about how the integers work
is by creating a random-variable situation that seems to model the integer phenomenon. By rigor-
ously showing that something happens with probability1 in the random model, we can gain some
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confidence that the analogous statement really is true in theintegers. The “Cramér model” of the
distribution of primes (see for example [35]) is probably the most well-known example of this
paradigm.

Here we give a probabilistic argument, adapted from Tao [41], for why one should expect theabc
conjecture to hold. Broadly speaking, the argument assertsthat if the radicals of three integers are
too small, then the “probability” that two of the integers sum to the third is vanishingly small; this
is assuming that these numbers with small radicals are “distributed randomly”. More specifically,
we will argue that the following equivalent version of theabc conjecture should be true:

abc Conjecture, Version 6. Supposeα, β, γ are positive real numbers satisfyingα + β + γ < 1.
WhenM is sufficiently large (in terms ofα, β, γ), there are no solutions to the equationa+ b = c
with c ≥ M , wherea, b, c are relatively prime positive integers satisfyingR(a) ≤ Mα, R(b) ≤
Mβ , R(c) ≤Mγ .

We see rather easily that Version 1 of theabc conjecture implies this new version: givenM and
α, β, γ with α+ β + γ < 1, we must have

R(abc) = R(a)R(b)R(c) ≤MαMβMγ =Mα+β+γ < cα+β+γ ,

for any triple satisfying the hypotheses of Version 6. But byVersion 1 withε = 1−(α+β+γ) > 0,
there can be only finitely many such triples(a, b, c); simply chooseM larger than the largestc that
occurs in any of them.

It is a little more difficult to see that Version 6 of theabc conjecture implies Version 1: on
the face of it, the loophole phrase “sufficiently large (in terms ofα, β, γ)” might allow an infinite
sequence of counterexamples to Version 1 corresponding to asequence of distinct triplesα, β, γ.
However, if there were in fact an infinite sequence of counterexamples to Version 1 for some
fixedε, then the corresponding sequence of “vector qualities”(α, β, γ) =

(

log c
logR(a)

, log c
logR(b)

, log c
logR(c)

)

would all lie in a compact region ofR3 (namely the simplex in the positive orthant defined by
x + y + z ≤ 1 − ε), and hence some subsequence of them would converge to a fixedpoint
(α0, β0, γ0) satisfyingα0 + β0 + γ0 ≤ 1− ε. Consequently, Version 6 of theabc conjecture could
be applied to the slightly larger point(α, β, γ) =

(

(1 + ε)α0, (1 + ε)β0, (1 + ε)γ0
)

to derive a
contradiction.

Now let’s use a probabilistic model to probe Version 6 itself. We will need the following lemma,
standard in analytic number theory (see [41]), saying that the numbers with a given radical are
quite sparse:

Proposition. For everyε > 0, there exists a constantT (ε) such that for every positive squarefree
integer r and everyM > 0, there are at mostT (ε)Mε integers less than2M whose radical
equalsr.

(This upper bound for the number of such integers will feature again, in a more precise form,
in a lower bound given in Section 5.1.) Using this lemma we canestimate, givenα, β, γ, the
number of triples of integers(a, b, c) there are with1 ≤ a, b ≤ 2M , M < c ≤ 2M andR(a) ≤
Mα, R(b) ≤ Mβ , R(c) ≤ Mγ . (Note that for the moment we are not paying attention to whether
two of these numbers sum to the third number.) There are at most Mα ·Mβ ·Mγ possibilities for
the three radicals, even if we forget that they have to be squarefree and relatively prime. Choosing
ε = 1

4
(1− (α+ β + γ)) > 0, the above proposition tells us that there areT (ε)Mε possibilities for

a for any givenR(a), and similarly forb andc. Therefore the number of such triples is at most

Mα ·Mβ ·Mγ ·
(

T (ε)Mε
)3

= T (ε)3Mα+β+γ+3ε = T (ε)3M1−ε.
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Now, instead of looking at the specific collection of triplesdescribed in the previous paragraph,
let us suppose thatwe choose the same number of triples completely at randomfrom the set of
triples(a, b, c) with 1 ≤ a, b ≤ 2M , M < c ≤ 2M ; what is the probability that at least one of the
chosen triples satisfiesa + b = c? The probability of a single chosen triple satisfyinga + b = c
is at most1/M , since there is at most one correct choice out ofM for c, no matter whata andb
are. Therefore the probability that we obtain such a chosen triple is at mostT (ε)3M1−ε ·M−1 =
T (ε)3M−ε. Because we have no reason to think that the actual triples described in the previous
paragraph are any more or less likely to satisfya + b = c than randomly chosen triples, we are
persuaded of the following heuristic: the “probability” isat mostT (ε)3M−ε that there exists a
triple (a, b, c) with 1 ≤ a, b ≤ 2M , M < c ≤ 2M that successfully satisfies the conditions in the
second sentence of Version 6 of theabc conjecture.

Every triple witha+b = c satisfies1 ≤ a, b ≤ 2k+1, 2k < c ≤ 2k+1 for a unique positive integer
k. Let the “kth event” be the assertion that there exists a successful triple forM = 2k as described
above. The “probability” of thekth event, by the above heuristic, is at mostT (ε)3(2k)−ε. Notice
that the series

∞
∑

k=0

T (ε)3(2k)−ε =
T (ε)3

1− 2−ε

converges to a finite number. Therefore, by the Borel–Cantelli lemma [19, pages 51–52], with
probability1 only finitely many of the events occur. We conclude that heuristically, only finitely
many triples should successfully satisfy the conditions inthe second sentence of Version 6 of the
abc conjecture; so if we chooseM large enough, we believe that there will be no counterexamples
remaining.

In Section 5.2, we discuss a refinement of this heuristic thatenabled the authors of [33] to
propose a stronger, even more precise version of theabc conjecture.

It is tempting to think of theabc conjecture as a vast conspiracy that arranges the numbers with
small radicals so precisely that no two of them ever add to a third. This temptation is even stronger
when we see examples like the infinite families from Section 3: we forced the smallest and largest
numbers to have tiny radicals, but theabc conjecture seems, like some mystical force, to keep the
middle number from being divisible by too large a perfect square. However, the above heuristic
(with, say,α = γ = ε andβ = 1 − 3ε) offers an explanation: these families do not contain all
that many triples, and probability simply dictates that it is overwhelmingly unlikely for any of the
middle numbers in such a sparse set to have a small radical.

We conclude this section by remarking that the same heuristic suggests, whenα+β+γ > 1, that
there do exist infinitely many triples(a, b, c) with a + b = c andc ≥ M that satisfyR(a) ≤ Mα,
R(b) ≤ Mβ , andR(c) ≤ Mγ . In other words, it is not just the numerical qualityq(a, b, c) =

log c
logR(abc)

that flirts with the boundaryq(a, b, c) = 1: the “vector quality”
(

log c
logR(a)

, log c
logR(b)

, log c
logR(c)

)

actually flirts with the triangular boundaryT = {x, y, z ≥ 0: x + y + z = 1} in R3 at every
single point. This observation leads to another question: can one find a construction of an infinite
sequence ofabc triples such that their “vector qualities” approach, in thelimit, a point ofT other
than(0, 1, 0) or one of the other two corners?

5. GENERALIZATIONS, REFINEMENTS, AND THE STATE OF THE ART

In this last section, we explore our most state-of-the-art knowledge about theabc conjecture. We
describe some (less elementary) constructions ofabc triples with much better quality than the ones
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we have seen so far; we present several refinements of the conjecture, which attempt to decide
where in the space between the “simplistic” and actualabc conjectures the exact boundary lies; we
generalize theabc conjecture to other settings and to more variables; and finally we discuss how
close we are to actually proving the inequalities that theabc conjecture asserts.

5.1. Best knownabc triples. We already saw in Section 3 that having examples of families of
abc triples helps us probe how sharp (indeed, how true) theabc conjecture is. Presumably, thinking
more deeply about how to find goodabc triples would yield even smaller radicals than the ones we
have seen thus far. Stewart and Tijdeman [37, Theorem 2] did exactly this in 1986: they came up
with a construction of infinitely manyabc triples of higher quality than those in Section 3.

They proved that for anyδ > 0, there exist infinitely many triples(a, b, c) of relatively prime
positive integers witha + b = c that satisfy

c > R(abc) exp

(

(4− δ)

√

logR(abc)

log logR(abc)

)

. (16)

All of these exps and logs can be a bit daunting for those not used to this game. With a little cun-
ning, one may show that for anyB > 1, every sufficiently largeabc triple satisfying the bound (16)
also satisfiesR(abc) < c/(log c)B. In fact, (16) is equivalent to a lower bound for the quality of
the form

q(a, b, c) > 1 +
4− δ√

log c · log log c. (17)

Both of these observations show that theseabc triples are far better than the ones in Section 3. Cer-
tainly they amply refute the “simplisticabc conjecture” and show that the epsilons in the statement
of the realabc conjecture must be present. But again, the lower bound for the quality tends to1 as
c grows large, and so even this better construction does not disprove the actual conjecture.

Stewart and Tijdeman’s construction is quite illuminating. First, given a positive integerr and
a parameterX that is far larger thanr, they consider the set of integers up toX whose factor-
izations contain only the firstr odd primesp1, . . . , pr; such integers are called “pr-friable” (or
“pr-smooth”). They obtain good estimates for the number of suchintegers by noting that the num-
ber of solutions topn1

1 · · · pnr
r ≤ X is the same as the number of lattice points(n1, . . . , nr) in the

r-dimensional simplex (high-dimensional pyramid)
{

x1, . . . , xr ≥ 0: x1 log p1 + · · ·+ xr log pr ≤ logX
}

.

WhenX is large, this number of lattice points is essentially ther-dimensional volume of the
simplex, which is easy to calculate. Their resulting lower bound for the number ofpr-friable
integers up toX is a more precise version of the Proposition from Section 4.3.

Then, they point out that two of thesepr-friable integers must be congruent to each other modulo
a high power of2; indeed, if the number of such integers exceeds2k, then the pigeonhole principle
forces two of them to lie in the same residue class modulo2k. (And if those two happen to have
common factors, their quotients by their greatest common divisor will also be congruent to each
other.) These two integers and their difference form a triple satisfyinga+ b = c; the product of the
radicals of the first two integers is at mostp1 · · ·pr; and the radical of their difference is at most
X/2k−1.

Of course, it is necessary to write down explicitly the relationships among all of these functions
and parameters; analytic number theorists learn tools thatare precisely suited for converting from
the above sketch to a full quantitative proof. When the dust settles, the inequality (16) is the payoff.
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Later, van Frankenhuysen [44] added an improvement to the argument of Stewart and Tijdeman:
instead of using the full lattice of integer points(n1, . . . , nr), he chose a sublattice sitting askew
inside the full integer lattice in such a way that the points in the sublattice were relatively more
tightly packed together, in the same way that a pyramidal stack of oranges in the grocery store
takes up less space than they would if we insisted on placing each one directly atop the one below
it. In this way, and using high-dimensional sphere-packingbounds already in the literature, he
showed that one could improve the constant4− δ in the above inequalities to6.068.

At the end of Section 4, we described the vector quality of anabc triple; we remark here that even
these fancyabc triples of Stewart/Tijdeman and van Frankenhuysen have theproperty that their
vector qualities converge to(0, 1, 0) or one of the other two corners, rather than some intermediate
point (α, β, γ) with α + β + γ = 1 andαβγ > 0. In other words, we still don’t know how
to construct an infinite family ofabc triples where each of the three integers has a radical that is
significantly smaller than itself.

5.2. Refinements of theabc conjecture. In a sense, the loophole phrases “only finitely many”
and “there exists a positive constant” make it hard to actually determine from data whether the
abc conjecture is acting like the truth. In 1996, Baker [4] refined the conjecture to provide some
insight into how the constantK(ε) in Version 4 of theabc conjecture should depend onε. Let
the functionω(n) denote the number of distinct primes (that is, ignoring repetitions) dividingn.
Baker proposed the following refinement: there exists an absolute constantK1 such that, ifa, b, c
are relatively prime positive integers satisfyinga+ b = c, then

c < ε−K1 min{ω(ab),ω(ac),ω(bc)}R(abc)1+ε

for anyε > 0. (The minimum in the exponent is there to help us: we can keep whichever two of
the three numbers have the fewest prime factors between them.) Although this bound has an extra
dependence ona, b, c, this dependence turns out to be smaller thanR(abc)ε, and so we have not
significantly altered the shape of the conjecture. It is truethat there is still an unknown absolute
constantK1 > 0 in this formulation; but at least now this constant is independent ofε, which is
often quite important when making deductions.

Baker did demonstrate that there exist infinitely manyabc triples satisfying the related inequality

c > K2ε
1−min{ω(ab),ω(ac),ω(bc)}R(abc)1+ε

for some absolute constantK2 > 0. In fact, his proof relies upon estimates for “linear forms in
logarithms”, a profound technical tool in Diophantine approximation for which Baker was awarded
the Fields Medal in 1970. He also mentions that Granville conjectured that there exists an absolute
constantK3 > 0 such thatc < K

Ω(abc)
3 R(abc) for all abc triples, whereΩ(n) counts the number of

prime factors ofn with multiplicity (so for example,ω(72) = 2 butΩ(72) = 5). Notice that there
is no exponent1 + ε on the right-hand side of this conjecture! But of course the slack has to go
somewhere:Ω(abc) can be far larger thanω(abc).

Most recently, another refinement has been put forward by Robert, Stewart, and Tenenbaum [33],
following up on a heuristic proposed by van Frankenhuysen inhis PhD thesis. In Section 4.3 we
described the heuristic assumption that statistically,R(c) is distributed independently fromR(a)
andR(b) whena, b, c are relatively prime anda+ b = c; we then estimated how many integers up
to M have radicals bounded byMα and so on. Through an extremely careful study of the func-
tion that counts how many integers up toM have their radical bounded by a second parameterY ,
Robert, Stewart, and Tenenbaum proposed the following two-part conjecture: First, there exists a
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real numberK4 such that allabc triples satisfy

c < R(abc) exp

(

4

√

3 logR(abc)

log logR(abc)

(

1 +
log log logR(abc)

2 log logR(abc)
+

K4

log logR(abc)

))

; (18)

second, there exists a real numberK5 such that infinitely manyabc triples satisfy

c > R(abc) exp

(

4

√

3 logR(abc)

log logR(abc)

(

1 +
log log logR(abc)

2 log logR(abc)
+

K5

log logR(abc)

))

. (19)

(To tell the truth, they included more detailed versions of this refinement with even more logs in
the picture!) Note that the right-hand side of their second conjecture (19) is a little bit larger than
the lower bound (16) coming from the construction of Stewartand Tijdeman, since we are dividing
only by

√

log logR(abc) in the main term inside the exponential instead oflog logR(abc). It is
actually easier than it might seem to show that their first conjecture (18) really does imply Version 2
of theabc conjecture.

Interestingly, a special quantity arises from these conjectures of Robert, Stewart, and Tenen-
baum. Define the “merit” of anabc triple to be

m(a, b, c) =
(

q(a, b, c)− 1
)2

logR(abc) log logR(abc).

Every infinite family ofabc triples ever established has the property that their merit tends to0
(it is not hard to verify this for the Stewart–Tijdeman examples, for instance, assuming that the
right-hand side of the inequality (17) is in fact the correctsize of the quality). If theabc conjecture
were false, it is an easy deduction from Version 5 that the merit would be unbounded above. But
it would actually follow from the conjectures (18) and (19) that the lim sup of all merits of all
abc triples equals48 exactly! So the merit is somehow an incredibly fine-scale measurement of
anabc triple, one that looks at the boundary between possible and impossible through a powerful
microscope.

For the record, the largest merit found to date is approximatey38.67, which comes from theabc
triple (25434 · 182587 · 2802983 · 85813163, 215 · 377 · 11 · 173, 556 · 245983) discovered by Ralf
Bonse in 2011. de Smit’s web site [10] lists the131 knownabc triples with merit greater than24.

5.3. Other alterations of the conjecture. In addition to these results, some interesting general-
izations and refinements of theabc conjecture have appeared in various contexts.

Congruenceabc conjecture.First we state yet another version of the conjecture, which looks like
it concerns only a small subset ofabc triples but is actually equivalent to the other versions we
have seen so far.

abc Conjecture, Version 7. For every positive integerN and everyε > 0, there exists a positive
constantE(N, ε) such that all triples(a, b, c) of relatively prime positive integers witha + b = c
andN | abc satisfy

c ≤ E(N, ε)R(abc)1+ε.

The special caseN = 1 is of course the familiarabc conjecture (specifically, Version 4). Moti-
vated by Oesterlé’s observation [31] that the special caseN = 16 of this new version implies the
full abc conjecture, Ellenberg [13] demonstrated that in fact16 can be replaced by any integerN ,
thus showing that Version 7 of theabc conjecture really is equivalent to the others.
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Uniform abc conjecture for number fields.An important focus in algebraic number theory is the
study ofnumber fields, which are finite field extensions of the fieldQ of rational numbers. Equiv-
alently, a number field is a field of the formQ(α), whereα is a root of a polynomial with integer
coefficients (analgebraic number). For example,α = i +

√
2 is an algebraic number since it is

a root of the polynomialx4 − 2x2 + 9; consequently,Q(α) is a number field, consisting of all
complex numbers of the formr+ sα+ tα2+uα3 for rational numbersr, s, t, u. Arithmetic can be
done in a consistent way in number fields, almost as nicely as in the rational numbers themselves,
and their study is essential to our understanding of solutions of polynomial equations.

Vojta [45, page 84] formulated a generalization of theabc conjecture to number fields, pointing
out many notable consequences of this generalization (see also [5, 12, 14]). However, that formu-
lation contains some unfamiliar terminology that would be too laborious to define here. The next
paragraph, therefore, is intended for those who are more familiar with algebraic number theory;
other readers may skip that paragraph and at least get an impressionistic idea of the statement of
the uniformabc conjecture.

Let K/Q be a number field of degreen with discriminantDK . For each prime idealp of K,
let | |p be the correspondingp-adic absolute value, normalized so that|p|p = NormK/Q(p)

−1/n;
for each real or complex embeddingτ of K, let |α|τ = |τ(α)|1/n be the corresponding normalized
Archimedean absolute value, where| | is the modulus of a complex number. Let the height of the
m-tuple(α1, ..., αm) ∈ Km be given by

H(α1, ..., αm) =
∏

v

max
{

|α1|v, ..., |αm|v
}

,

where the product goes over all placesv (prime ideals and embeddings). Finally, let the conductor
of them-tuple be given by

N(α1, ..., αm) =
∏

p∈I
|p|−1

p ,

whereI is the set of prime idealsp such that|α1|p, . . . , |αm|p are not all equal. Then we have:

Uniform abc Conjecture. For everyε > 0, there exists a constantU(ε) > 0 with the following
property: for every number fieldK of degreen overQ, and every triple(a, b, c) of elements ofK
satisfyinga+ b+ c = 0,

H(a, b, c) ≤ U(ε)
(

D
1/n
K N(a, b, c)

)1+ε
.

To shed some light on the relationship between this number field version and the usualabc
conjecture, we remark that ifK = Q, thenn = 1 andDK = 1; furthermore, if(a, b, c) is a
relatively prime triple of integers, then the heightH(a, b, c) is simplymax{|a|, |b|, |c|} and the
conductorN(a, b, c) is simplyR(|abc|). (The above definitions of the height and conductor have
the convenient property that they do not change if every element of them-tuple is multiplied by the
same factor, and so a relative primality hypothesis is actually unnecessary for this generalization.)
Therefore theK = Q case of the uniformabc conjecture is exactly Version 4 of theabc conjecture,
once we take absolute values of the three numbers and reorderthem so thatc is the largest.

Additional integers.Our last generalization, stated by Browkin and Brzezinski [7], incorporates
more variables than the three we have been working with so far.
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abc Conjecture, n-Variable Version. For every integern ≥ 3 and everyε > 0, there exists a
positive constantB(n, ε) such that all relatively primen-tuples(a1, . . . , an) of nonzero integers
with a1 + · · ·+ an = 0 and no vanishing subsums satisfy

max{|a1|, . . . , |an|} ≤ B(n, ε)R(|a1 · · · an|)2n−5+ε.

Here, “no vanishing subsums” means that it is not possible toreordera1, . . . , an so thata1 + · · ·+
ak = 0 = ak+1 + · · ·+ an for some1 ≤ k ≤ n− 1; this hypothesis is necessary because of trivial
examples such as(a1, a2, a3, a4) = (2n,−2n, 3n,−3n), which is a relatively prime quadruple even
though some pairs of terms have huge common factors. Thisn-variable version is our familiar
friend whenn = 3: given such a triplea1, a2, a3, one of them has a different sign than the other
two, and we recover Version 4 of theabc conjecture by lettingc be the absolute value of the one
with a different sign anda, b the absolute values of the other two.

Browkin and Brzezinski constructed examples showing that the exponent2n−5+ε on the right-
hand side cannot be reduced; their constructions are rathersimilar to the transfer method described
in Section 2.4. Takingn = 4 for example, if(a, b, c) is anyabc triple, we may set

(a1, a2, a3, a4) = (a3, 3abc, b3,−c3), (20)

which one can check does satisfya1 + a2 + a3 + a4 = 0; for these quadruples,

max{|a1|, . . . , |an|} = c3 ≥
(

R(abc)
)3 ≥

(

1
3
R(|a1a2a3a4|)

)3
= 1

27

(

R(|a1a2a3a4|)
)2·4−5

.

Equation (20) is then = 4 case of a sequence of impressive identities: whenn ≥ 3,

aj =
2n− 5

2j − 1

(

n+ j − 4

2j − 2

)

a2j−1(bc)n−j−2 for 1 ≤ j ≤ n− 2, an−1 = b2n−5, an = −c2n−5

(21)
is ann-tuple satisfying the hypotheses of then-variable version of theabc conjecture. For thesen-
tuples, the maximum absolute value isc2n−5, whileR(|a1 · · · an|) is at most a constant (the product
of all the primes up to2n− 5, say) timesR(abc), which is at mostc times a constant when(a, b, c)
is anabc triple. Not only does this construction show that the exponent 2n− 5 + ε would be best
possible, it also shows that then-variable version for anyn ≥ 4 implies the usual three-variableabc
conjecture. (It seems less clear whether, for example, the5-variable version of theabc conjecture
implies the4-variable version.)

Interestingly, the statement of then-variable version of theabc conjecture is not what one would
predict from a probabilistic heuristic like the one described in Section 4.3: the analogous argument
would lead again to a conjecture with exponent1 + ε on the right-hand side. In this case, proba-
bility would lead us astray—but presumably because the set of counterexamples is extremely thin,
coming only from constructions like equation (20). In fact,it follows from a sufficiently strong
version of Vojta’s conjecture [46, Conjecture 2.3] that theexponent2n − 5 + ε can be reduced to
1 + ε if we exclude a finite number of constructions like equation (21) for eachn. Even without
excluding these constructions, it might be possible to reduce the exponent somewhat if we insist
that then-tuple be pairwise relatively prime, rather than just relatively prime as a tuple. In fact,
in the function field case [8] such theorems have been worked out under intermediate assumptions
such as everym-subtuple of then-tuple being relatively prime; these theorems could serve as
motivation for analogous versions of then-variable conjecture, in the spirit of the previous section.
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5.4. Progress towards theabc conjecture. The first players of this game were Stewart and Ti-
jdeman [37]: in 1986 they proved that

c < exp
(

K6R(abc)
15
)

(22)

for some constantK6 > 0. Their proof used bounds on linear forms in logarithms similar to those
mentioned in Section 5.2, in particular ap-adic version due to van der Poorten. Subsequently,
Stewart and Yu [38, 39] improved the bound (22) to

c < exp
(

K7R(abc)
1/3(logR(abc))3

)

for some constantK7 > 0. They achieved this improvement by replacing van der Poorten’s p-adic
estimates with even stronger ones due to Yu. Despite the factthat these results were hard-earned
and at least bring the problem of boundingc into the realm of the finite, neither inequality is as
good asc < R(abc)B for any fixedB.

The number theory community has been abuzz with the topic of theabc conjecture the past few
years. In August 2012, Shinichi Mochizuki released the finalinstallment of his series of four papers
on “inter-universal Teichmüller theory”, in which he claimed to have proven theabc conjecture as
a consequence of his work. His proof, with its incredible length and heavy dependence on his past
work in anabelian geometry—a new and untested field with a limited number of practitioners—
is still under verification by the mathematical community. Moreover, due to the introduction of
several arcane objects such as “Frobenioids,” “log-theta-lattice”, and “alien arithmetic holomorphic
structures,” a cautious response from the mathematical community was inevitable.

Mochizuki published a progress report in December 2013, informing the community of the ad-
vencement that had been made towards verifying his results.(See the Polymath page [25] for useful
links to Mochizuki’s papers, progress report, announcements, and other related topics.) Members
of his home university have studied his preparatory papers and waded through his manuscripts on
inter-universal Teichmüller theory, communicating withMochizuki on suggested improvements
and adjustments to be made; they plan to give seminars on the material starting in the fall of 2014.
On the other hand, due to the esoteric nature of Mochizuki’s work (and the presence of some at
least superficial mistakes in the deduction of theabc conjecture from his theory), it has been hard
for others to attest to the validity of his results. While a wave of colleagues around the world was
drawn to the task of understanding his exotic, potentially revolutionary work, the reality is that it
is difficult for most academics to pause their own research toinvest the necessary energy. Several
skilled mathematicians spent a good deal of time trying to understand how the arguments were
structured but, after making little headway in being able toverify Mochizuki’s claims, eventually
abandoned the project.

This unsettled state of affairs begs the question: when doesone say that a problem in math-
ematics has been solved? Many of us would like to think we havean absolute standard, where
proofs are accepted if and only if they are completely rigorous and complete, line by line, like a
successfully compiling computer program. But in practice,we tolerate typos, allusions to proofs
of similar cases, sketches of arguments, and occasional exercises for the reader as acceptable parts
of research papers; our standard of proof in mathematics is asocial construct [42, Section 4]. Re-
searchers in specialized fields form their own epistemic communities and move forward in clusters,
building around one another’s work, and sharing their knowledge with researchers in neighboring
areas as they can.

A mathematician’s results, then, are accepted only when herprimary audience—the cohort of
experts occupying the same niche—has validated their accuracy. In this case, with Mochizuki’s
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original and complex work, it will take some time for more mathematicians to surmount the barrier
and begin exporting the ideas to the wider community. In the best possible world, experts will come
to agree that the papers contain a proof to one of the most significant problems in number theory,
as well as the foundations of new areas of research. But untiland unless that happens, we must be
content with theabc conjecture remaining a mystery, at least for now.
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