APPENDIX HAUSDORFF'S MAXIMALITY THEOREM

FROM:

W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, New York, 3rd edition, 1987.

We shall first prove a lemma which, when combined with the axiom of choice, leads to an almost instantaneous proof of Theorem 4.21.

If \mathscr{F} is a collection of sets and $\Phi \subset \mathscr{F}$, we call Φ a *subchain* of \mathscr{F} provided that Φ is totally ordered by set inclusion. Explicitly, this means that if $A \in \Phi$ and $B \in \Phi$, then either $A \subset B$ or $B \subset A$. The union of all members of Φ will simply be referred to as the *union of* Φ .

Lemma Suppose \mathscr{F} is a nonempty collection of subsets of a set X such that the union of every subchain of \mathscr{F} belongs to \mathscr{F} . Suppose g is a function which associates to each $A \in \mathscr{F}$ a set $g(A) \in \mathscr{F}$ such that $A \subset g(A)$ and g(A) - A consists of at most one element. Then there exists an $A \in \mathscr{F}$ for which g(A) = A.

PROOF Fix $A_0 \in \mathcal{F}$. Call a subcollection \mathcal{F}' of \mathcal{F} a tower if \mathcal{F}' has the following three properties:

- (a) $A_0 \in \mathscr{F}'$.
- (b) The union of every subchain of \mathcal{F}' belongs to \mathcal{F}' .
- (c) If $A \in \mathcal{F}'$, then also $g(A) \in \mathcal{F}'$.

The family of all towers is nonempty. For if \mathscr{F}_1 is the collection of all $A \in \mathscr{F}$ such that $A_0 \subset A$, then \mathscr{F}_1 is a tower. Let \mathscr{F}_0 be the intersection of all towers. Then \mathscr{F}_0 is a tower (the verification is trivial), but no proper subcollection of \mathscr{F}_0 is a tower. Also, $A_0 \subset A$ if $A \in \mathscr{F}_0$. The idea of the proof is to show that \mathscr{F}_0 is a subchain of \mathscr{F} .

Let Γ be the collection of all $C \in \mathcal{F}_0$ such that every $A \in \mathcal{F}_0$ satisfies either $A \subset C$ or $C \subset A$.

For each $C \in \Gamma$, let $\Phi(C)$ be the collection of all $A \in \mathcal{F}_0$ such that either $A \subset C$ or $g(C) \subset A$.

Properties (a) and (b) are clearly satisfied by Γ and by each $\Phi(C)$. Fix $C \in \Gamma$, and suppose $A \in \Phi(C)$. We want to prove that $g(A) \in \Phi(C)$. If $A \in \Phi(C)$, there are three possibilities: Either $A \subset C$ and $A \neq C$, or A = C, or $g(C) \subset A$. If A is a proper subset of C, then C cannot be a proper subset of g(A), otherwise g(A) - A would contain at least two elements; since $C \in \Gamma$, it follows that $g(A) \subset C$. If A = C, then g(A) = g(C). If $g(C) \subset A$, then also $g(C) \subset g(A)$, since $A \subset g(A)$. Thus $g(A) \in \Phi(C)$, and we have proved that $\Phi(C)$ is a tower. The minimality of \mathcal{F}_0 implies now that $\Phi(C) = \mathcal{F}_0$, for every $C \in \Gamma$.

In other words, if $A \in \mathcal{F}_0$ and $C \in \Gamma$, then either $A \subset C$ or $g(C) \subset A$. But this says that $g(C) \in \Gamma$. Hence Γ is a tower, and the minimality of \mathcal{F}_0 shows that $\Gamma = \mathcal{F}_0$. It follows now from the definition of Γ that \mathcal{F}_0 is totally ordered.

Let A be the union of \mathscr{F}_0 . Since \mathscr{F}_0 satisfies (b), $A \in \mathscr{F}_0$. By (c), $g(A) \in \mathscr{F}_0$. Since A is the largest member of \mathscr{F}_0 and since $A \subset g(A)$, it follows that A = g(A).

Definition A choice function for a set X is a function f which associates to each nonempty subset E of X an element of $E: f(E) \in E$.

In more informal terminology, f "chooses" an element out of each non-empty subset of X.

The Axiom of Choice For every set there is a choice function.

Hausdorff's Maximality Theorem Every nonempty partially ordered set P contains a maximal totally ordered subset.

PROOF Let \mathcal{F} be the collection of all totally ordered subsets of P. Since every subset of P which consists of a single element is totally ordered, \mathcal{F} is not empty. Note that the union of any chain of totally ordered sets is totally ordered.

Let f be a choice function for P. If $A \in \mathcal{F}$, let A^* be the set of all x in the complement of A such that $A \cup \{x\} \in \mathcal{F}$. If $A^* \neq \emptyset$, put

$$g(A) = A \cup \{f(A^*)\}.$$

If $A^* = \emptyset$, put g(A) = A.

By the lemma, $A^* = \emptyset$ for at least one $A \in \mathcal{F}$, and any such A is a maximal element of \mathcal{F} .