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HOW MANY KNEADS DOES A SEQUENCE NEED?

BARRY R. SMITH

Abstract. We define “kneading” as a simple operation on finite se-
quences of positive integers. We answer the titular question and in doing
so make a surprise connection with a venerable piece of number theory.

1. Kneading sequences

We pinch an end of a finite sequence of positive integers by splitting 1 away
from the terminal entry as so

(4, 7, 3, 1, . . .) 7→ (1, 3, 7, 3, 1, . . .)

or, when the entry is 1 to begin with, by pushing the terminal 1 back onto
its neighboring entry

(1, 3, 7, 3, 1, . . .) 7→ (4, 7, 3, 1, . . .)

We will knead1 a finite sequence of positive integers by

• Popping off the first entry, then
• Pinching both ends of what remains, then
• Placing the popped entry at the end of the result.

For instance, repeated kneading of the sequence (2, 2, 3, 6) gives:

(2, 2, 3, 6) 7→ (1, 1, 3, 5, 1, 2) 7→ (4, 5, 1, 1, 1, 1) 7→ (1, 4, 1, 1, 2, 4) 7→ (1, 3, 1, 1, 2, 3, 1, 1)

7→ (1, 2, 1, 1, 2, 3, 2, 1) 7→ (1, 1, 1, 1, 2, 3, 3, 1) 7→ (2, 1, 2, 3, 4, 1) 7→ (3, 3, 5, 2)

7→ (1, 2, 5, 1, 1, 3) 7→ (1, 1, 5, 1, 1, 2, 1, 1) 7→ (6, 1, 1, 2, 2, 1) 7→ (2, 2, 3, 6)

Suddenly, surprisingly, we are back where we started. Naturally, we ask,

Question 1. How many kneads does a sequence need to return to itself?

The seeming simplicity of kneading disguises a complex piece of number the-
ory, and answering this question will require several ingredients and a good
amount of stirring. We begin with a partial answer to whet our appetites.

Partial answer. Every finite sequence of positive integers eventually returns

to itself after a finite amount of kneading.

Let us call a cycle like the one above a kneading cycle.
Sequences of length 1 or 2 are degenerate cases, and special kneading rules

apply. Kneading fixes the sequences of length 1, and kneading the sequence

2000 Mathematics Subject Classification. Primary 11E25; Secondary 11A05.
Key words and phrases. Continued fractions, binary quadratic forms.
1Unrelated to the topological notion of “kneading”

1

http://arxiv.org/abs/1408.4631v1


(a, b) will give the sequence (1, b − 2, 1, a) when b ≥ 3 and (b, a) when b = 1
or 2.

We can verify the partial answer above with a simple idea: assign an integer
to each sequence of positive integers, its alternant, and show that

(i) For each positive integer a 6= 2, there are only finitely many sequences
with alternant a,

(ii) Kneading preserves alternants.

Kneading is an invertible process – simply pop the entry off the back, pinch
both ends of what remains, then place the popped entry at the front2. Thus,
kneading permutes the finitely many sequences with a given alternant, and
the partial answer follows when the alternant is not 2. It will be possible also
to show that the sequences with alternant 2 are (2), (1, 2), (2, 1), and the
sequences (1, q, 1) with q an arbitrary positive integer. A direct check shows
each of these returns to itself after 1 or 2 kneads.

To define alternants, we turn to continued fractions. Every rational number
α
β
> 1 can be expanded in two ways as a finite simple continued fraction:

α

β
= q1 +

1

q2 +
1

. . . +
1

ql

with positive integer quotients q1, . . . , ql. (Switching between the two expan-
sions is accomplished by pinching the right end of this sequence.)

We will denote the numerator of the continued fraction with sequence of
quotients q1, . . . , ql by [q1, . . . , ql]. Such expressions are called continuants.

Definition. The alternant of a finite sequence of positive integers −→q =
(q1, . . . , ql) with l ≥ 3 is the difference

[−→q ]∗ := [q1, . . . , ql]− [q2, . . . , ql−1]

We define directly the alternant of (q1) to be q1 and of (q1, q2) to be q1q2.

All sequences that were kneaded at the top have alternant 100. For instance
[2, 2, 3, 6]∗ = [2, 2, 3, 6]− [2, 3] = 107− 7 = 100. Properties (i) and (ii) imply
that for a 6= 2, the sequences with alternant a are partitioned into finitely
many kneading cycles. There can be more than one cycle, as, for instance,
(2, 50) has alternant 100 and generates a cycle disjoint from the earlier one.
We naturally ask,

Question 2. How many disjoint kneading cycles have a given alternant?

To answer these questions, we enter the realm of binary quadratic forms.
A binary quadratic form is, for us, a polynomial Ax2 + Bxy + Cy2 in inde-
terminates x and y with integer coefficients. The question of which integers
are obtained by inputting integers into a given form has motivated a tremen-
dous amount of mathematics. Famous results include Fermat’s Two Squares

2Except for the sequences (a), (1, a), and (2, a), which the inverse simply reverses.
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Theorem that the prime numbers represented by the form x2 + y2 are those
congruent to 1 modulo 4 and the fact that for each nonsquare number D > 0,
the Pellian Equation x2 −Dy2 = 4 has a solution with y 6= 0.

A study of general forms begins with the notion of Lagrange and Gauss
of equivalent forms. Two forms are equivalent if one is transformed into the
other by acting upon it with a 2 × 2 matrix with integer coefficients and
determinant 1, that is, a matrix in the group SL2(Z). Specifically, a matrix

M =

(

α β
γ δ

)

in SL2(Z) transforms the form f(x, y) into

f(αx+ βy, γx+ δy),

another binary quadratic form. This gives a right action of SL2(Z) on the set
of binary quadratic forms. The action preserves discriminants, so the forms
with fixed discriminant D split into equivalence classes comprising forms that
can all be transformed into each other. The first major theorem in the theory
of binary quadratic forms is that the number of equivalence classes with given
discriminant is finite. For D > 0, the number of classes of forms all of which
have relatively prime coefficients (primitive forms) is a class number, a central
notion of algebraic number theory.

We define the length parity of a finite sequence to be 0 if the number of
terms in the sequence is even and 1 if the number is odd. All sequences in a
kneading cycle have the same length parity.

Answer to Question 2. For each pair of integers3 (a, s) with a > 0 and

s = 0 or 1, the number of kneading cycles of positive integers with alternant

value a and length parity s is equal to the number of equivalence classes of

binary quadratic forms of positive discriminant a2 ± (−1)s · 4.
The number of cycles with given alternant is essentially4 a class number !

To answer Question 1, we must continue on to reduction of forms. A
reduction algorithm is a standard method for determining when two forms
are equivalent. Reduction is much more complicated in the case of interest to
us, when D > 0. In fact, it seems to be little known that there are competing
notions of reduction in this case. We shall use Zagier reduction [2] rather
than the more common reduction of Lagrange and Gauss.

Zagier declares a form f = Ax2 +Bxy + Cy2 to be reduced if

A > 0, C > 0, B > A+ C.

To perform a Zagier reduction step on f , we

(i) Compute the “reducing number”, determined as the unique integer n
satisfying

n− 1 <
B +

√
D

2A
< n,

3excluding (a, s) = (1, 1) and (2, 1)
4Technically, the number of kneading cycles matches the number of classes of forms, im-

primitive and primitive. But when the discriminant is square free, the number of kneading
cycles is a bona fide class number.
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in which D is the discriminant of f .
(ii) Act on the form f with the matrix

[

n 1
−1 0

]

Zagier reduction is iteration of reduction steps.
Because for a reduced form D ≥ D− (B− 2A)2 = 4A(B−A−C) > 0, we

see that the reduced forms with given discriminant D have bounded A. The
same inequalities then imply that B must be bounded, hence C must be as
well. There are thus finitely many Zagier-reduced forms with given positive
discriminant. Zagier shows that every form will reach a reduced form after
finitely many reduction steps, after which it will continue through a cycle of
reduced forms. He also shows that two reduced forms are equivalent if and
only if each can be obtained from the other by reduction, that is, both will
be in the same cycle of forms. Thus, every equivalence class contains reduced
forms, and the number of cycles of reduced primitive forms is a class number.

For integers a > 0 and s = 0 or 1, excepting the cases (a, s) = (1, 1) and
(2, 1), we define sets

S(a,s) = { Sequences of positive integers with alternant a and length parity s }
Z(a,s) = {Zagier-reduced forms of discriminant a2 + (−1)s · 4 }
We define a map ψ(a,s) : Z(a,s) → S(a,s) as follows. If f = Ax2 +Bxy + Cy2 is
in Z(a,s), we first compute z = (a+B)/2 (an integer) and expand the rational
number z

A
into the unique continued fraction with sequence of quotients of

length parity s. We set ψ(a,s)(f) to be this sequence of quotients. It will be
shown to have alternant a in Section 2

We also define a map φ(a,s) : S(a,s) → Z(a,s). Recall the notation [q1, . . . , ql]
for a continuant, that is, the numerator of the continued fraction with se-
quence of quotients q1, . . . , ql. We define φ(a,s)((q1, . . . , ql)) to be the form

(1) [q2, . . . , ql] x
2 + ([q1, . . . , ql] + [q2, . . . , ql−1])xy + [q1, . . . , ql−1] y

2

(When l = 1, we should interpret this as φ(a,s)((q1)) = x2 + q1xy + y2.) In
Section 2, the discriminant of the form (1) will be computed as a2+(−1)s · 4,
where a is the alternant of (q1, . . . , ql).

We will also show:

Theorem 1. The maps ψ(a,s) and φ(a,s) are inverses, and through them Zagier

reduction of forms corresponds to kneading.

Properties (i)-(ii) of alternants and the Answer to Question 2 are immediate
consequences. We can also now answer the titular question:

Answer to Question 1. The number of kneads needed for a sequence to

return to itself is the length of the cycle containing the corresponding reduced

form.

Example. Consider the form f = 44x2+114xy+17y2, which has discriminant
1002 + 4. To compute the corresponding sequence (with a = 100 and s = 0),

4



we compute z = (114+100)/2 = 107, then expand 107
44

as a continued fraction
with even length

107

44
= 2 +

1

2 +
1

3 +
1

6
Thus, ψ(100,0)(f) = (2, 2, 3, 6), the sequence from the example at the begin-

ning. We reduce f by computing the integer n for which n−1 < 114+
√
10004

88
<

n, that is, n = 3, and then act on f by the matrix

(

3 1
−1 0

)

to obtain

the new form f ′ = 71x2 + 150xy + 44y2. To find ψ(100,0)(f
′), we calculate

z = (150 + 100)/2 = 125, then expand 125
71

as a continued fraction to obtain
the sequence ψ(f ′) = (1, 1, 3, 5, 1, 2), the result of kneading (2, 2, 3, 6).

Theorem (1) provides a very efficient method for producing all sequences
with given alternant and length parity from a known list of Zagier-reduced
forms of a certain discriminant. Alternatively, from a known list of sequences
with given alternant, we can compute the entire list of corresponding Zagier-
reduced forms. For instance, it can be shown that all sequences with even
length and alternant 11 lie in one kneading cycle, namely

(1, 11) 7→ (1, 9, 1, 1) 7→ (1, 8, 2, 1) 7→ (1, 7, 3, 1) 7→ (1, 6, 4, 1) 7→ (1, 5, 5, 1)

7→ (1, 4, 6, 1) 7→ (1, 3, 7, 1) 7→ (1, 2, 8, 1) 7→ (1, 1, 9, 1) 7→ (11, 1) 7→ (1, 11)

From these and (1), we obtain the entire list of Zagier reduced forms of
discriminant 125, listed as a reduction cycle (representing the form Ax2 +
Bxy + Cy2 by (A,B,C))

(11, 13, 1) 7→ (19, 31, 11) 7→ (25, 45, 19) 7→ (29, 55, 25) 7→ (31, 61, 29) 7→ (31, 63, 31)

7→ (29, 61, 31) 7→ (25, 55, 29) 7→ (19, 45, 25) 7→ (11, 31, 19) 7→ (1, 13, 11) 7→ (11, 13, 1)

Lemmermeyer [1] notes that often the middle terms of the triples in a cycle of
Zagier-reduced forms steadily increase until they reach a maximum and then
steadily decrease until they return to the minimum. In the above example,
this phenomenon is illuminated by the clear pattern in the corresponding
kneading cycle. Interestingly, this increasing/decreasing pattern sometimes
holds for cycles with discriminants that do not have the form a2 ± 4.

2. Proof Pudding

There is much to prove. To begin we develop some properties of continued
fractions and continuants.

Beginning with [·] = 1, [q1] = q1, continuants satisfy the recurrences

(2)
[q1, . . . , ql] = q1 [q2, . . . , ql] + [q3, . . . , ql] or

[q1, . . . , ql] = ql [q1, . . . ql−1] + [q1, . . . , ql−2]

We adopt, for now, the first as our definition and later show that it gives the
numerator of an appropriate continued fraction. The equivalence with the
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second recurrence and all other properties we will need follow elegantly from
the matrix identity:

(3)

[

q1 1
1 0

] [

q2 1
1 0

]

· · ·
[

ql 1
1 0

]

=

[

[q1, . . . , ql] [q1, . . . , ql−1]
[q2, . . . , ql] [q2, . . . ql−1]

]

,

which can be verified by induction using the first recursion (2).
Transposing both sides of (3) reveals the surprising symmetry [q1, . . . , ql] =

[ql, . . . , q1], from which follows the second recursion (2). Taking determinants
in (3) yields another useful identity

(4) [q1, . . . , ql] [q2, . . . , ql−1]− [q1, . . . , ql−1] [q2, . . . , ql] = (−1)l

We also note the simplifications

[q1, q2, . . . , qi, 0, qi+1, . . . , ql] = [q1, q2, . . . , qi−1, qi + qi+1, qi+2, ql](5)

[0, q1, . . . , ql] = [q2, . . . , ql](6)

[1, q1, . . . , ql] = [q1 + 1, . . . , ql, ](7)

The first follows from (3) and the computation
[

qi 1
1 0

] [

0 1
1 0

] [

qi+1 1
1 0

]

=

[

qi + qi+1 1
1 0

]

;

and the others follow readily from the recursion (2).
Now let us return to continued fractions. We can prove inductively that

(8) q1 +
1

q2 +
1

.. . +
1

ql

=
[q1, . . . , ql]

[q2, . . . , ql]

We see from (4) that this fraction is in lowest terms, so the continuant
[q1, . . . , ql] is the numerator when the continued fraction with partial quo-
tients q1, . . . , ql is fully simplified.

Now we prove that for given integers a > 0 and s = 0 or 1 with (a, s) 6=
(1, 1) or (2, 1), in order:

(i) If (q1, . . . , ql) has alternant a, then φ(a,s)((q1, . . . , ql)) is Zagier-reduced
with discriminant a2 + (−1)l · 4

(ii) ψ(a,s) ◦ φ(a,s) is the identity map on S(a,s),
(iii) If f is a form of discrimimant a2+(−1)s ·4, then ψ(a,s)(f) has alternant

a and length parity s,
(iv) φ(a,s) ◦ ψ(a,s) is the identity map on Z(a,s),
(v) Kneading corresponds to Zagier reduction of forms

(i): This is easily verified when l = 1 or 2, so let l ≥ 3. Let (q1, . . . , ql) be
a sequence of positive integers with alternant a, and let φ(a,s)((q1, . . . , ql)) =
Ax2 + Bxy + Cy2 be the form (1). To see that it is reduced, note that

6



coefficients A and C are clearly positive, so we need only check that B >
A+ C. Using (2), we compute

B − C = (ql − 1) [q1, . . . , ql−1] + [q1, . . . , ql−2] + [q2, . . . , ql−1]

> (ql − 1) [q2, . . . , ql−1] + [q2, . . . , ql−2] + [q2, . . . , ql−1]

= ql [q2, . . . , ql−1] + [q2, . . . , ql−2] = [q2, . . . , ql] = A

For the discriminant, we compute, using (4) and (2),

([q1, . . . , ql] + [q2, . . . , zl−1])
2 − 4 [q2, . . . , zl] [q1, . . . , ql−1]

= [q1, . . . , ql]
2 + [q2, . . . , ql−1]

2 − 2 [q2, . . . , ql] [q1, . . . , ql−1] + (−1)l · 2
= (q1 [q2, . . . , ql])

2 + 2q1 [q2, . . . , ql] [q3, . . . , ql] + [q3, . . . , ql]
2 + [q2, . . . , ql−1]

2

− 2q1 [q2, . . . , ql] [q2, . . . , ql−1]− 2 [q2, . . . , ql] [q3, . . . , ql−1] + (−1)l · 2
= (q1 [q2, . . . , ql]− [q2, . . . , ql−1] + [q3, . . . , ql])

2 + (−1)l · 2
− (2 [q2, . . . , ql] [q3, . . . , ql−1]− 2 [q2, . . . , ql−1] [q3, . . . , ql])

= a2 + (−1)l · 4

(ii): The definition of alternants and (1) show that the sequence
ψ(a,s)

(

φ(a,s)((q1, . . . , ql))
)

is obtained by expanding in a continued fraction
the rational number with denominator [q2, . . . , ql] and numerator [q1, . . . , ql].
From (8) and the well-known uniqueness of continued fraction expansions,
this sequence is (q1, . . . , ql) (which has the right length parity).

(iii): Choose a Zagier-reduced form f = Ax2 + Bxy + Cy2 of discriminant
D = a2 + (−1)s · 4 with a > 2, s = 0 or 1, and D > 0. By design, the length
parity of ψ(a,s)(f) is s, so we need only worry about the alternant.

First, B and D have the same parity, hence a and B do. The positive
integer z = (a +B)/2 is thus a divisor of

B2 − a2

4
= AC +

D

4
− a2

4
= AC + (−1)s

Thus, A is relatively prime to z and AC ≡ (−1)s+1 (mod z).
Note as well that a2+(−1)s · 4 = B2−4AC > (A−C)2 since f is reduced.

Then a > |A − C| since a > 2, so a + A > C. Hence, using again that f is
reduced, we have z > (a+ A+ C)/2 > C.

Expand z/A as a simple continued fraction with sequence of quotients
(q1, . . . ql), and choose the length so that l and s have the same parity. From
(8), z = [q1, . . . , ql] and A = [q2, . . . , ql]. Since AC ≡ (−1)s+1 (mod z),
we also have from (4) the congruence C ≡ [q1, . . . , ql−1] (mod z). Since
0 < C < z, it follows that C = [q1, . . . , ql−1].
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From (4), we have

[q2, . . . , ql−1] = 2
AC + (−1)l

a+B
=
B2 − (a2 + (−1)l · 4) + (−1)l · 4

2(a+B)

=
B − a

2

Thus, the alternant of ψ(a,s)(f) is

[q1, . . . , ql]− [q2, . . . , ql−1] =
B + a

2
− B − a

2
= a

(iv): Let f = Ax2 +Bxy + Cy2 be as in (iii). The verification of (iii) shows
at least that the form φ(a,s) ◦ ψ(a,s)(f) is Ax

2 + B′xy + Cy2 for some integer
B′. Also, (i) and (iii) show that B′2 − 4AC = a2 + (−1)s · 4. But B is the
unique such integer, thus φ(a,s) ◦ ψ(a,s)(f) = f .
(v): Suppose that (q1, . . . , ql) is a sequence with alternant a and length parity
s. The reducing number for Zagier reduction of φ(a,s)((q1, . . . , ql)) is

⌈

[q1, . . . , ql] + [q2, . . . , ql−1] +
√
D

2 [q2, . . . , ql]

⌉

,

where D = a2 + (−1)s · 4 is the discriminant. When l = 1, so q1 > 2, the

number inside the ceiling is
q1+

√
q2
1
−4

2
, making the value of the ceiling q1.

When l = 2, the reducing number is

⌈

q1q2 + 2 +
√

(q1q2)2 + 4

2q2

⌉

A little algebra shows that this ceiling is q1 +1 when q2 ≥ 2 and q1 + 2 when
q2 = 1. A direct check shows that in these cases, reducing the form using the
appropriate matrix corresponds to kneading the corresponding sequence. It
also explains the special cases required in the definition of kneading.

Otherwise, for l ≥ 3 the term
√
D in the numerator is approximately a, so

the whole numerator is approximately

2 [q1, . . . , ql] = 2q1 [q2, . . . , ql] + 2 [q3, . . . , ql] .

More algebra shows that the exact quotient is between q1 and q1 + 1, so the
reducing number is always q1 + 1 in this case. Acting on φ(a,s)((q1, . . . , ql))

by the reduction matrix

(

q1 + 1 1
−1 0

)

, the theorem follows by checking the
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formulas ((5) shows these are appropriate even when q2 or ql is 1)

[q2 − 1, q3, . . . , ql−1, ql − 1, 1, q1]

(9)

= (q1 + 1)2 [q2, . . . , ql]− (q1 + 1) ([q1, . . . , ql] + [q2, . . . , ql−1]) + [q1, . . . , ql−1] ,

[1, q2 − 1, q3, . . . , ql−1, ql − 1, 1, q1] + [q2 − 1, q3, . . . , ql−1, ql − 1, 1]
(10)

= (2q1 + 2) [q2, . . . , ql]− ([q1, . . . , ql] + [q2, . . . , ql−1])

[1, q2 − 1, q3, . . . , ql−1, ql − 1, 1] = [q2, . . . , ql]
(11)

First separating off a q1 from the second and fourth continuants on the right
side of (9), then repeatedly applying (2) simplifies it to

(q1 + 1) ([q2, . . . , ql]− [q3, . . . , ql])− [q2, . . . , ql−1] + [q3, . . . , ql−1]

= (q2 − 1)(q1 + 1) [q3, . . . , ql] + (q1 + 1) [q4, . . . , ql]

− (q2 − 1) [q3, . . . , ql−1]− [q4, . . . , ql−1]

= (q1 + 1) [q2 − 1, q3, . . . , ql]− [q2 − 1, q3, . . . , ql−1]

= (q1 + 1) [q2 − 1, q3, . . . , ql−1, ql − 1] + q1 [q2 − 1, q3, . . . , ql−1]

= q1 [q2 − 1, q3, . . . , ql−1, ql − 1, 1] + [q2 − 1, q3, . . . , ql−1, ql − 1]

= [q2 − 1, q3, . . . , ql−1, ql − 1, 1, q1]

With this, (9) is verified. The verification of (10) is similar, but shorter, after
first simplifying the left side to

q1 [q2, . . . , ql] + [q2, . . . , ql−1, ql − 1] + [q2 − 1, q3, . . . , ql]

Equation (11) follows immediately from (7).
Let us conclude with two more questions:

(1) Alternants and the form (1) are defined when the sequence (q1, . . . , ql) is
in a commutative ring with identity. In particular, using (1) we obtain binary
quadratic forms from arbitrary integer sequences, but they are typically not
reduced. Can kneading be extended to arbitrary integer sequences in such a
way that it still corresponds to Zagier reduction?
(2) The theory binary quadratic forms is greatly enriched by Gauss composi-
tion, a composition law that makes the classes a group. We can transfer this
group operation to kneading cycles, but is there a more natural definition?
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