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The G-number « = aJ + bO is thus divisible by = only when a + b s
divisible by 3.

If « is not divisible by m, then one of the three following formula
pairs is vahid:

a=3h b=3k+ e a=3h+e b=23k;
a=3h+e¢ b=23k+e,
with ¢2 = 1, and thus, if &J + kO is set equal to A,
k=3A4+e0 or k=32 +¢eJ or k=23 +e¢,

so that in every case « has the form

k = 3 + &,
where ¢ is a G-unit
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k® = 9(32% + 32% + Ae?) + &5,
and, because ¢ = +1, it has the form
K3 = 9n £+ 1.

If « ts not dinsible by = we then have the congruences x = e mod 3,

+ 1 mod 9.
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The Quadratic Reciprocity Law
(The Euler-Legendre-Gauss theorem.) The reciprocal Legendre symbols

of the odd brime numbers v and a are soverned by the formula
7, F % 4 g e
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(Z;) : (g) = (—1)kp-Di21-a-1yi2),

This law, the so-called quadratic reciprocity law, was formulated
but not proved by Euler (Opuscula analytica, Petersburg, 1783). In
1785 Legendre discovered the same law (Histoire de I’ Académie des
Criomrnel indamandantly AFf Rixlar and mravad 14 naniialls,
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The first complete proof was presented by Karl Friedrich Gauss
(1777-1855) in his famous Disquisitiones arithmeticae (published in 1801),
a book that laid the foundations of contemporary number theory;
this work, its five hundred quarto pages swarming with profound
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ideas, was written when Gauss was 20 years old. “It is really
astonishing,”” says Kronecker, “to think that a single man of such
young years was able to bring to light such a wealth of results, and
above all to present such a profound and well organized treatment of
an entirely new discipline.”

Later Gauss discovered seven other proofs of the reciprocity
theorem. (The Gauss proofs may be found in vol. 14 of Ostwald’s
Klassiker der exakten Wissenschaften.)

The quadratic reciprocity law is one of the most important theorems
of number theory. Gauss called it the ‘ Theorema fundamentale.”
The American mathematician Dickson says in his Theory of Numbers:
“The quadratic reciprocity law is doubtless the most important tool
in the theory of numbers and occupies the central position in its
history.”

The importance of this law led other mathematicians like Jacobi,
Cauchy, Liouville, Kronecker, Schering, and Frobenius to investigate
it after Gauss and offer proofs of it. In his Niedere Zahlentheorie,
P. Bachmann cites no fewer than 52 proofs and reports on the most
important.

Probably the simplest of all the proofs is the following arithmetic-
geometric proof, which arises from the combination of the so-called
lemma of Gauss (Gauss’ Werke, vol. I1, p. 51) and a geometric idea of
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Cayley (Arthur Cayl yley [1821-1895], Collected Mathematical P apers,
vol. TI).

Before taking up the proof itself we will give the derivation of
Gauss’ lemma,

Let p be an odd prime number and D an integer that is not divisible
by p. If x represents one of the numbers 1,2,3,...,p=(p — 1)/2,
R, the common residue of the division Dx/p, g, the corresponding
integral quotient, then

(1) Dx = R, + gep-

Accordingly as R, is smaller or greater than 4p, we set R, = p, or
R, = px + p, where in the second case p, represents the negative
minimum residue of the division Dx/p, and we obtain

(la) Dx=p,+ g.p or (1b) Dx =p, + p + gxp.

If n is then the number of negative minimum residues occurring in
the p divisions Dxfp (for x = 1,2, 3, ..., p), we have n equations of
the form (1) and m = p — n equations of the form (la).
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We convert these equations into congruences mod p and obtain the
y congruences

(2) Dx = p, mod p.

Now the p residues p, agree, except with respect to sign and
sequence, with the p numbers 1 to p.

[If, for example, p, were equal to p, or p, = — p, for two different
values r and s of x, then Dr = p, and Ds = p, would yield by sub-
traction or addition, respectively, D(r F 5s) = Omod p. This con-
gruence is, however, impossible, because neither D nor r ¥ s is
divisible by p.]

Multiplication of the p congruences (2) results in

Drp! = (—1)"p! modp,
and from this we obtain
D’ = (—1)"mod p.
However, since, according to Euler’s theorem (No. 19),

Dl = (%) mod p,

we obtain

FE A\

(2) = (=1 mod,

whence, since both sides of this congruence have the absolute value 1,

© (5) = (-0~

This formula, in which n represents the number of negative minimum
residues resulting from the p divisions Dxfp (x =1,2,3,...,p),
s Gauss’ lemma.

Now let D be some odd prime number ¢ that differs from p. We
convert the p equations (la) and (15) into congruences to the
modulus 2, leave out all the excess multiples of 2, e.g., (¢ — 1)#, and
obtain

X=pe+g.mod2 and x=1 + p, + g, mod 2.
Addition of these p congruences yields

2% =n+ 2p, + 2g,mod 2.
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However, since the absolute values of p, are in agreement with the
numbers 1 through p and each summand can be replaced by its
opposite value in a congruence mod 2, we will write 3 x in the obtained
congruence instead of > p, and —n instead of n, thereby obtaining

2x+n=Jx+ >g,mod2
or

(4) n = >g,mod 2,

In accordance with (4) we can now write (3) as

(9 -

Now g, is the greatest integer contained in the quotient gx/p. If we
designate this as [gx/p], we obtain at last

(D) (%) = (—1)Hesim,

where x passes through all the integers from 1 to p = (p — 1)/2.
Accordingly,

(1I) {2\ = (—])ilrvial
\¢/, 7

where y passes through all the integers from | to q = (¢ — 1)/2.
Multiplication of (I) and (II) gives us

p) (‘7 - El(a/p)x1 + E(plW]
III 1.2} = (—1)2a» plovl,
(1) (9 P) (=1)

The exponent of the right-hand side is, however, easily found.

1

Fic. 4.
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On a system of rectangular coordinates xy we draw the rectangle
with the four angles

q

2

and bisect it with a diagonal 4 from the origin, possessing the equation
y = (gx/p); we then mark off all the lattice points* within the
rectangle. (Cf. the figure, in which p = 19, ¢ = 11.)

To begin with, it is clear that no marked lattice point x|y lies on d,
since here x would necessarily be <4p and y < ¢, which contradicts
the condition y/x = ¢/p.

For an integral abscissa x the corresponding ordinate of d is
y = (¢x/p) and the number of marked lattice points lying on this
ordinate is [¢gx/p]. Consequently, the number of the marked lattice
points lying in the lower half of the rectangle is >[¢x/p], where x

passes through all the integers from 1 to p.

i 9

¢ $
0|0, 2‘0, cla

Similarly, the number of all the marked lattice points lying in the
upper half of our rectangle is 3 py/q], where y passes through all the
integers from 1 to g.

The exponent appearing in (III) is then the number of all the
marked lattice points in our rectangle. Thisis a total of p- q elements.

Consequently,
/E\ IE\ (1w
() (3 = =0
or
2)(2 = (—1)ir-D/2-lw-1)2) E.D.
(q P) (=1 ' h

—
&) Gauss’ Fundamental Theorem of Algebra
Every equation of the nth degree

2"+ C 2"t G2t - + 0 =0
has n roots.

Expressed more precisely, this theorem reads:
The polynomial

f(2) =22+ C2""t + Coz" 2 + --- +C,
can always be divided into n linear factors of the formz — «,.

* A lattice point is a point whose coordinates are integers.



