5. Geometry of numbers

In this section, we prove the classical finiteness theorems for a number ring R : the Picard group $\operatorname{Pic}(R)$ is a finite group, and the unit group R^{*} is in many cases finitely generated. These are not properties of arbitrary Dedekind domains, and the proofs rely on the special fact that number rings can be embedded in a natural way as lattices in a finite dimensional real vector space. The key ingredient in the proofs is non-algebraic: it is the theorem of Minkowski on the existence of lattice points in symmetric convex bodies given in 5.1.

Let V be a vector space of finite dimension n over the field \mathbf{R} of real numbers, and $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbf{R}$ a scalar product, i.e. a positive definite bilinear form on $V \times V$. The scalar product induces a notion of volume on V, which is also known as the Haar measure on V. For a parallelepiped

$$
B=\left\{r_{1} x_{1}+r_{2} x_{2}+\ldots+r_{n} x_{n}: 0 \leq r_{i}<1\right\}
$$

spanned by $x_{1}, x_{2}, \ldots, x_{n}$, the volume is defined by

$$
\operatorname{vol}(B)=\left|\operatorname{det}\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{1 / 2} .
$$

This definition shows that the 'unit cube' spanned by an orthonormal basis for V has volume 1 , and that the image of this cube under a linear map T has volume $|\operatorname{det}(T)|$. If the vectors x_{i} are written with respect to an orthonormal basis for V as $x_{i}=\left(x_{i j}\right)_{j=1}^{n}$, then we have

$$
\left|\operatorname{det}\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j=1}^{n}\right|^{1 / 2}=\left|\operatorname{det}\left(M \cdot M^{t}\right)\right|^{1 / 2}=|\operatorname{det}(M)|
$$

for $M=\left(x_{i j}\right)_{i, j=1}^{n}$.
The volume function on parallelepipeds can be uniquely extended to a measure on V. Under the identification $V \cong \mathbf{R}^{n}$ via an orthonormal basis for V, this is the Lebesgue measure on \mathbf{R}^{n}. We usually summarize these properties by saying that V is an n-dimensional Euclidean space.

A lattice in V is a subgroup of V of the form

$$
L=\mathbf{Z} \cdot x_{1}+\mathbf{Z} \cdot x_{2}+\ldots+\mathbf{Z} \cdot x_{k},
$$

with $x_{1}, x_{2}, \ldots, x_{k} \in V$ linearly independent. The integer k is the rank of L. It cannot exceed $n=\operatorname{dim} V$, and we say that L is complete or has maximal rank if it is equal to n. For a complete lattice $L \subset V$, the co-volume $\operatorname{vol}(V / L)$ of L is defined as the volume of the parallelepiped F spanned by a basis of L. Such a parallelepiped is a fundamental domain for L as every $x \in V$ has a unique representation $x=f+l$ with $f \in F$ and $l \in L$. In fact, $\operatorname{vol}(V / L)$ is the volume of V / L under the induced Haar measure on the factor group V / L.

A subset $X \subset V$ is said to be symmetric if it satisfies $-X=\{-x: x \in X\}=X$.
5.1. Minkowski's theorem. Let L be a complete lattice in an n-dimensional Euclidean space V and $X \subset V$ a bounded, convex, symmetric subset satisfying

$$
\operatorname{vol}(X)>2^{n} \cdot \operatorname{vol}(V / L)
$$

Then X contains a non-zero lattice point. If X is closed, the same is true under the weaker assumption $\operatorname{vol}(X) \geq 2^{n} \cdot \operatorname{vol}(V / L)$.

Proof. By assumption, the set $\frac{1}{2} X=\left\{\frac{1}{2} x: x \in X\right\}$ has volume $\operatorname{vol}\left(\frac{1}{2} X\right)=2^{-n} \operatorname{vol}(X)>$ $\operatorname{vol}(V / L)$. This implies that the map $\frac{1}{2} X \rightarrow V / L$ cannot be injective, so there are distinct points $x_{1}, x_{2} \in X$ with $\frac{1}{2} x_{1}-\frac{1}{2} x_{2}=\omega \in L$. As X is symmetric, $-x_{2}$ is contained in X. By convexity, we find that the convex combination ω of x_{1} and $-x_{2} \in X$ is in $X \cap L$.

Under the weaker assumption volume $\operatorname{vol}(X) \geq 2^{n} \operatorname{vol}(V / L)$, each of the sets $X_{k}=$ $(1+1 / k) X$ with $k \in \mathbf{Z}_{\geq 1}$ contains a non-zero lattice point $\omega_{k} \in L$. As all ω_{k} are contained in the bounded set $2 X$, there are only finitely many different possibilities for ω_{k}. It follows that there is a lattice element $\omega \in \cap_{k} X_{k}$, and for closed X we have $\cap_{k} X_{k}=X$.
Let K be a number field of degree n. Then K is an n-dimensional \mathbf{Q}-vector space, and by base extension we can map K into the complex vector space

$$
K_{\mathbf{C}}=K \otimes_{\mathbf{Q}} \mathbf{C} \cong \prod_{\sigma: K \rightarrow \mathbf{C}} \mathbf{C}=\mathbf{C}^{n}
$$

by the canonical map $\Phi_{K}: x \mapsto(\sigma(x))_{\sigma}$. Note that Φ_{K} is a ring homomorphism, and that the norm and trace on the free \mathbf{C}-algebra $K_{\mathbf{C}}$ extend the norm and the trace of the field extension K / \mathbf{Q}. The image $\Phi_{K}[K]$ of K under the embedding lies in the \mathbf{R}-algebra

$$
K_{\mathbf{R}}=\left\{\left(z_{\sigma}\right)_{\sigma} \in K_{\mathbf{C}}: z_{\bar{\sigma}}=\bar{z}_{\sigma}\right\}
$$

consisting of the elements of $K_{\mathbf{C}}$ invariant under the involution $F:\left(z_{\sigma}\right)_{\sigma} \longrightarrow\left(\bar{z}_{\bar{\sigma}}\right)_{\sigma}$. Here $\bar{\sigma}$ denotes the embedding of K in \mathbf{C} that is obtained by composition of σ with complex conjugation.

On $K_{\mathbf{C}} \cong \mathbf{C}^{n}$, we have the standard hermitian scalar product $\langle\cdot, \cdot\rangle$. It satisfies $\left\langle F z_{1}, F z_{2}\right\rangle=\left\langle z_{1}, z_{2}\right\rangle$, so its restriction to $K_{\mathbf{R}}$ is a real scalar product that equips $K_{\mathbf{R}}$ with a Euclidean structure. In particular, we have a canonical volume function on $K_{\mathbf{R}}$. It naturally leads us to the following fundamental observation.
5.2. Lemma. Let R be an order in a number field K. Then $\Phi_{K}[R]$ is a lattice of co-volume $|\Delta(R)|^{1 / 2}$ in $K_{\mathbf{R}}$.
Proof. Choose a Z-basis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ for R. Then $\Phi_{K}[R]$ is spanned by the vectors $\left(\sigma x_{i}\right)_{\sigma} \in K_{\mathbf{R}}$, and using the matrix $X=\left(\sigma_{i}\left(x_{j}\right)\right)_{i, j=1}^{n}$ from the proof of 4.6, we see that the co-volume of $\Phi_{K}[R]$ equals

$$
\left|\operatorname{det}\left(\left\langle\left(\sigma x_{i}\right)_{\sigma},\left(\sigma x_{j}\right)_{\sigma}\right\rangle\right)_{i, j=1}^{n}\right|^{1 / 2}=\left|\operatorname{det}\left(X^{t} \cdot \bar{X}\right)\right|^{1 / 2}=|\Delta(R)|^{1 / 2} .
$$

If $I \subset R$ is a non-zero ideal of norm $N(I)=[R: I] \in \mathbf{Z}$, then 5.2 implies that $\Phi_{K}[I]$ is a lattice of co-volume $N(I) \cdot|\Delta(R)|^{1 / 2}$ in $K_{\mathbf{R}}$. To this lattice in $K_{\mathbf{R}}$ we will apply Minkowski's theorem 5.1, which states that every sufficiently large symmetric box in $K_{\mathbf{R}}$ contains a non-zero element of $\Phi_{K}[I]$.

In order to compute volumes in $K_{\mathbf{R}}$, we have a closer look at its Euclidean structure. Denote the real embeddings of K in \mathbf{C} by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ and the pairs of complex embeddings of K by $\sigma_{r+1}, \overline{\sigma_{r+1}}, \sigma_{r+2}, \overline{\sigma_{r+2}}, \ldots, \sigma_{r+s}, \overline{\sigma_{r+s}}$. Then we have $r+2 s=n=[K: \mathbf{Q}]$, and an isomorphism of \mathbf{R}-algebras

$$
\begin{align*}
K_{\mathbf{R}} & \longrightarrow \mathbf{R}^{r} \times \mathbf{C}^{s} \tag{5.3}\\
\left(z_{\sigma}\right)_{\sigma} & \longmapsto\left(z_{\sigma_{i}}\right)_{i=1}^{r+s} .
\end{align*}
$$

