Ivlaster course 2UU4

5. GEOMETRY OF NUMBERS

In this section, we prove the classical finiteness theorems for a number ring R: the Picard
group Pic(R) is a finite group, and the unit group R* is in many cases finitely generated.
These are not properties of arbitrary Dedekind domains, and the proofs rely on the special
fact that number rings can be embedded in a natural way as lattices in a finite dimensional
real vector space. The key ingredient in the proofs is non-algebraic: it is the theorem of
Minkowski on the existence of lattice points in symmetric convex bodies given in 5.1.

Let V be a vector space of finite dimension n over the field R of real numbers, and
(-,+) : V. xV — R a scalar product, i.e. a positive definite bilinear form on V' x V. The
scalar product induces a notion of volume on V', which is also known as the Haar measure
on V. For a parallelepiped

B={rmz +roxo+ ...+ 1z, :0<r; <1}
spanned by z1,xs, ..., x,, the volume is defined by

vol(B) = | det((x;, z;) Zj:1|1/2.

This definition shows that the ‘unit cube’ spanned by an orthonormal basis for V' has
volume 1, and that the image of this cube under a linear map 7" has volume | det(7')|. If

the vectors z; are written with respect to an orthonormal basis for V' as z; = (z45)}-;,
then we have

| det((wi, 2;)) =] /% = | det(M - M*)|V/2 = | det(M)]

for M = (2i;)7 ;-1

The volume function on parallelepipeds can be uniquely extended to a measure on V.
Under the identification V' = R" via an orthonormal basis for V, this is the Lebesgue mea-
sure on R"™. We usually summarize these properties by saying that V' is an n-dimensional
Fuclidean space.

A lattice in V is a subgroup of V of the form

L=7Z x21+7Z 29+ ... +7Z- 2y,

with x1,29,..., 2, € V linearly independent. The integer k is the rank of L. It cannot

exceed n = dim V', and we say that L is complete or has maximal rank if it is equal to n.

For a complete lattice L C V', the co-volume vol(V/L) of L is defined as the volume of the

parallelepiped F' spanned by a basis of L. Such a parallelepiped is a fundamental domain

for L as every x € V has a unique representation x = f 4+ [ with f € ' and [ € L. In fact,

vol(V/L) is the volume of V/L under the induced Haar measure on the factor group V/L.
A subset X C V is said to be symmetric if it satisfies —X = {—-z:2 € X} = X.

5.1. Minkowski’s theorem. Let L be a complete lattice in an n-dimensional Euclidean
space V and X C V a bounded, convex, symmetric subset satisfying

vol(X) > 2" - vol(V/L).

Then X contains a non-zero lattice point. If X is closed, the same is true under the weaker
assumption vol(X) > 2" - vol(V/L).
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Proof. By assumption, the set X = {3z : z € X} has volume vol(3X) = 27"vol(X) >
vol(V/L). This implies that the map X — V/L cannot be injective, so there are distinct
points x1,x2 € X with %xl — %l‘g =w € L. As X is symmetric, —x2 is contained in X.
By convexity, we find that the convex combination w of z1 and —x9 € X isin X N L.
Under the weaker assumption volume vol(X) > 2"vol(V/L), each of the sets X}, =
(14+1/k)X with k € Z>; contains a non-zero lattice point wy, € L. As all wy, are contained
in the bounded set 2.X, there are only finitely many different possibilities for wy. It follows
that there is a lattice element w € N X}, and for closed X we have N, X, = X. O

Let K be a number field of degree n. Then K is an n-dimensional Q-vector space, and by
base extension we can map K into the complex vector space

Kc=K®qC= [[ c=cC"
o:K—C
by the canonical map Pk : x — (0(z)),. Note that ®x is a ring homomorphism, and that
the norm and trace on the free C-algebra K¢ extend the norm and the trace of the field
extension K/Q. The image @, [K] of K under the embedding lies in the R-algebra

Kr ={(20)s € Kc: 256 =Zo}

consisting of the elements of K¢ invariant under the involution F' : (z,)s — (Z&)s-
Here & denotes the embedding of K in C that is obtained by composition of o with
complex conjugation.

On K¢ = C", we have the standard hermitian scalar product (-, -). It satisfies
(Fz1,Fz9) = (21,292), so its restriction to Kgr is a real scalar product that equips Kr
with a Euclidean structure. In particular, we have a canonical volume function on Kgr. It
naturally leads us to the following fundamental observation.

5.2. Lemma. Let R be an order in a number field K. Then ® i [R] is a lattice of co-volume
IA(R)|Y/? in Kg.

Proof. Choose a Z-basis {z1,%2,...,z,} for R. Then ®x[R] is spanned by the vectors

(0x;)s € Kr, and using the matrix X = (o;(z;)) from the proof of 4.6, we see that

inj=1
the co-volume of ®x[R] equals

| det(((02i)o, (02)0))7 = [V2 = [ det(X* - X)[V/2 = |A(R)|M2. 0

If I C R is a non-zero ideal of norm N(I) = [R : I| € Z, then 5.2 implies that ®x[I]
is a lattice of co-volume N (I) - |A(R)|'/? in Kg. To this lattice in Kg we will apply
Minkowski’s theorem 5.1, which states that every sufficiently large symmetric box in Kgr
contains a non-zero element of ®x[I].

In order to compute volumes in Kgr, we have a closer look at its Euclidean structure.

Denote the real embeddings of K in C by 01,09, ...,0, and the pairs of complex embed-
dings of K by 0,41,0,11,0r42, 0742, -,0r+s,0rts- Lhen we have r +2s =n = [K : Q],
and an isomorphism of R-algebras
(5.3) KR — R"x C?

r+s

(20)0 > (20,)i27
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