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5. Geometry of numbers

In this section, we prove the classical finiteness theorems for a number ring R: the Picard

group Pic(R) is a finite group, and the unit group R∗ is in many cases finitely generated.

These are not properties of arbitrary Dedekind domains, and the proofs rely on the special

fact that number rings can be embedded in a natural way as lattices in a finite dimensional

real vector space. The key ingredient in the proofs is non-algebraic: it is the theorem of

Minkowski on the existence of lattice points in symmetric convex bodies given in 5.1.

Let V be a vector space of finite dimension n over the field R of real numbers, and

〈·, ·〉 : V × V → R a scalar product, i.e. a positive definite bilinear form on V × V . The

scalar product induces a notion of volume on V , which is also known as the Haar measure

on V . For a parallelepiped

B = {r1x1 + r2x2 + . . . + rnxn : 0 ≤ ri < 1}

spanned by x1, x2, . . . , xn, the volume is defined by

vol(B) = | det(〈xi, xj〉)
n
i,j=1|

1/2.

This definition shows that the ‘unit cube’ spanned by an orthonormal basis for V has

volume 1, and that the image of this cube under a linear map T has volume | det(T )|. If

the vectors xi are written with respect to an orthonormal basis for V as xi = (xij)
n
j=1,

then we have

| det(〈xi, xj〉)
n
i,j=1|

1/2 = | det(M ·M t)|1/2 = | det(M)|

for M = (xij)
n
i,j=1.

The volume function on parallelepipeds can be uniquely extended to a measure on V .

Under the identification V ∼= Rn via an orthonormal basis for V , this is the Lebesgue mea-

sure on Rn. We usually summarize these properties by saying that V is an n-dimensional

Euclidean space.

A lattice in V is a subgroup of V of the form

L = Z · x1 + Z · x2 + . . . + Z · xk,

with x1, x2, . . . , xk ∈ V linearly independent. The integer k is the rank of L. It cannot

exceed n = dim V , and we say that L is complete or has maximal rank if it is equal to n.

For a complete lattice L ⊂ V , the co-volume vol(V/L) of L is defined as the volume of the

parallelepiped F spanned by a basis of L. Such a parallelepiped is a fundamental domain

for L as every x ∈ V has a unique representation x = f + l with f ∈ F and l ∈ L. In fact,

vol(V/L) is the volume of V/L under the induced Haar measure on the factor group V/L.

A subset X ⊂ V is said to be symmetric if it satisfies −X = {−x : x ∈ X} = X .

5.1. Minkowski’s theorem. Let L be a complete lattice in an n-dimensional Euclidean

space V and X ⊂ V a bounded, convex, symmetric subset satisfying

vol(X) > 2n · vol(V/L).

Then X contains a non-zero lattice point. If X is closed, the same is true under the weaker

assumption vol(X) ≥ 2n · vol(V/L).
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Proof. By assumption, the set 1

2
X = { 1

2
x : x ∈ X} has volume vol( 1

2
X) = 2−nvol(X) >

vol(V/L). This implies that the map 1

2
X → V/L cannot be injective, so there are distinct

points x1, x2 ∈ X with 1

2
x1 −

1

2
x2 = ω ∈ L. As X is symmetric, −x2 is contained in X .

By convexity, we find that the convex combination ω of x1 and −x2 ∈ X is in X ∩ L.

Under the weaker assumption volume vol(X) ≥ 2nvol(V/L), each of the sets Xk =

(1+1/k)X with k ∈ Z≥1 contains a non-zero lattice point ωk ∈ L. As all ωk are contained

in the bounded set 2X , there are only finitely many different possibilities for ωk. It follows

that there is a lattice element ω ∈ ∩kXk, and for closed X we have ∩kXk = X . �

Let K be a number field of degree n. Then K is an n-dimensional Q-vector space, and by

base extension we can map K into the complex vector space

KC = K ⊗Q C ∼=
∏

σ:K→C

C = Cn

by the canonical map ΦK : x 7→ (σ(x))σ. Note that ΦK is a ring homomorphism, and that

the norm and trace on the free C-algebra KC extend the norm and the trace of the field

extension K/Q. The image ΦK [K] of K under the embedding lies in the R-algebra

KR = {(zσ)σ ∈ KC : zσ = zσ}

consisting of the elements of KC invariant under the involution F : (zσ)σ −→ (zσ)σ.

Here σ denotes the embedding of K in C that is obtained by composition of σ with

complex conjugation.

On KC
∼= Cn, we have the standard hermitian scalar product 〈 · , · 〉. It satisfies

〈Fz1, F z2〉 = 〈z1, z2〉, so its restriction to KR is a real scalar product that equips KR

with a Euclidean structure. In particular, we have a canonical volume function on KR. It

naturally leads us to the following fundamental observation.

5.2. Lemma. Let R be an order in a number field K. Then ΦK [R] is a lattice of co-volume

|∆(R)|1/2 in KR.

Proof. Choose a Z-basis {x1, x2, . . . , xn} for R. Then ΦK [R] is spanned by the vectors

(σxi)σ ∈ KR, and using the matrix X = (σi(xj))
n
i,j=1 from the proof of 4.6, we see that

the co-volume of ΦK [R] equals

| det(〈(σxi)σ, (σxj)σ〉)
n
i,j=1|

1/2 = | det(Xt ·X)|1/2 = |∆(R)|1/2. �

If I ⊂ R is a non-zero ideal of norm N(I) = [R : I] ∈ Z, then 5.2 implies that ΦK [I]

is a lattice of co-volume N(I) · |∆(R)|1/2 in KR. To this lattice in KR we will apply

Minkowski’s theorem 5.1, which states that every sufficiently large symmetric box in KR

contains a non-zero element of ΦK [I].

In order to compute volumes in KR, we have a closer look at its Euclidean structure.

Denote the real embeddings of K in C by σ1, σ2, . . . , σr and the pairs of complex embed-

dings of K by σr+1, σr+1, σr+2, σr+2, . . . , σr+s, σr+s. Then we have r + 2s = n = [K : Q],

and an isomorphism of R-algebras

KR −→ Rr ×Cs(5.3)

(zσ)σ 7−→ (zσi
)r+s
i=1

.
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